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ABSTRACT
In this paper, we describe current efforts towards interlink-
ing music-related datasets on the Web. We first explain
some initial interlinking experiences, and the poor results
obtained by taking a näıve approach. We then detail a par-
ticular interlinking algorithm, taking into account both the
similarities of web resources and of their neighbours. We
detail the application of this algorithm in two contexts: to
link a Creative Commons music dataset to an editorial one,
and to link a personal music collection to corresponding web
identifiers. The latter provides a user with personally mean-
ingful entry points for exploring the web of data, and we
conclude by describing some concrete tools built to generate
and use such links.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Linked Data
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1. INTRODUCTION
The Linking Open Data community project [3] aims at pub-
lishing and interlinking open datasets by following simple
rules [2] for linking data. The publication step can to some
extent be automated, using tools such as D2R or Open-
Link Virtuoso (which both allow relational databases to be
published as linked data) or P2R (which allows SWI-Prolog
knowledge bases to be published in the same way). All these
tools handle declarative mappings from a given data struc-
ture to corresponding web resources and associated RDF
descriptions. Once this publication is achieved, we still have
to create links to other datasets, in order for a user agent
to navigate from one to another. A typical example of such
interlinking would be the following one, where a music band
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in a Creative Commons label is linked to its location in the
Geonames dataset, and to the corresponding resource in an
editorial database1:

<http://dbtune.org/jamendo/artist/5>
foaf:based_near <http://sws.geonames.org/2991627/> ;
owl:sameAs <http://zitgist.com/music/artist/

0781a3f3-645c-45d1-a84f-76b4e4decf6d>.

Then, you may access the actual audio content from the Cre-
ative Commons label, some extra information such as the
birth dates of the members of this band from the editorial
dataset, and detailed geographic information (latitude, lon-
gitude, hierarchy of geographical features) from the Geon-
ames dataset.

For small datasets published manually (such as an individ-
ual’s FOAF file), it is possible to create such links manu-
ally. However, doing so for large datasets is impractical: we
need a way to automatically detect the overlapping parts of
heterogeneous datasets. In this paper, we detail a few algo-
rithms that have been developed, implemented and practi-
cally deployed to interlink different music-related datasets.
We mainly focus on the most sophisticated one, applicable
in a Linked Data context, and taking into account not only
the similarities of single resources but also the similarities
of their neighbours. We evaluate how this algorithm per-
forms when applied to link a real-world Creative Commons
dataset to an editorial one. We also show how a personal
music collection can be treated as one such dataset, enabling
a user to benefit from the growing body of knowledge on the
Semantic Web in a personally meaningful way.

We define the mapping problem as follows. We con-
sider two RDF datasets D1 and D2, respectively describ-
ing a number of web resources ri and si. We consider
the problem of matching resources—finding resources sy

in our target dataset, D2, which identify the same ob-
ject as a resource rx in our seed dataset, D1. For ex-
ample, we want to find sy = http://zitgist.com/music/artist/

0781a3f3-645c-45d1-a84f-76b4e4decf6d for rx = http://dbtune.org/

jamendo/artist/5. All mapping problems in our context can be
reduced to this one, even literal expansion where a resource
rx is linked to a literal l and we are looking for a resource
sy corresponding to l—for example, expanding “Moselle,
France” into http://sws.geonames.org/2991627/. In these cases,

1We use the Turtle notation throughout the paper, with the
namespaces defined in § 8



a simple transformation (creating a blank node between rx

and l) is enough to return ourselves to a resource matching
problem.

2. NAIVE INTERLINKING
In this section, we describe some näıve approaches to tack-
ling this resource matching problem, and identify their fail-
ings.

2.1 Simple literal lookups
Most datasets provide a literal search facility, either through
a dedicated Web service (eg. Geonames, Musicbrainz), or
through a SPARQL end-point on which we can use filters on
literals, or in some cases built-in literal matching functional-
ity. So one solution to link resources from our two datasets
would be to first issue the following query on D1:

SELECT ?l
WHERE { <r> ?p ?l } FILTER (isLiteral(?l))

and use the bindings of ?l to issue a literal search on D2.
We can then try to map the resulting resources to r.

We used this kind of approach to link the Jamendo dataset
to the Geonames one2. Jamendo provides information about
the location of artists, in the form of a literal string (such as
“Moselle, France”). We use this to query the Geonames web
service, and get back the corresponding Geonames resource.
In practice, we found that the literal strings provided by
Jamendo are specific enough for this approach to work well.
In the two instances when more than one candidate was
returned for a location string, no link was created.

2.2 Extended literal lookups
Although this simple approach can be suitable for interlink-
ing particular datasets in cases where a literal string reliably
provides sufficient disambiguation it is unlikely to discrim-
inate suitably in most cases. For example, when trying to
apply it to link musical works in the BBC John Peel Sessions
to resources in the DBpedia dataset [1], we come across the
literal“Violet”3. The actual song which the algorithm should
link to is just one of the sixteen results of the corresponding
literal lookup.

One solution is to add constraints on the resulting resources.
For example, by using the DBpedia links to Yago [10], we
can restrict our resources to be of a specific Yago type, or we
can restrict it to be linked to a particular infobox URI (spec-
ifying a template for structured data on the corresponding
Wikipedia page). This leads us to the following SPARQL
query:

PREFIX p: <http://dbpedia.org/property/>
SELECT ?r
WHERE
{ ?r ?p "Violet"@en.
{
{?r a <http://dbpedia.org/class/yago/Song107048000>}

2All links to mentioned datasets are available in § 7
3For the resource http://dbtune.org/bbc/peel/work/1498

Figure 1: Example datasets—we here try to match ele-

ments from A and B

UNION
{?r p:wikiPageUsesTemplate

<http://dbpedia.org/resource/Template:single_infobox>}
}

}

This approach was used to link the musical works and the
artists in the BBC John Peel sessions dataset to correspond-
ing resources in DBpedia. Constraints on the target re-
sources were manually defined, and queries taking into ac-
count the seed literal and these constraints were issued to
the DBpedia SPARQL end-point.

However, even with restrictions on the nature of target re-
sources, a literal may not be discriminating enough. For ex-
ample, the resource http://dbtune.org/jamendo/artist/5 is linked
to the literal “Both”. Searching the Musicbrainz dataset for
“Both” while restricting ourselves to artists gives us two re-
sults. Likewise, when looking for the Nirvana version of the
song “Love Buzz” in the DBpedia dataset, we have to dis-
ambiguate between the original song and the Nirvana cover.
There is therefore a need for a more sophisticated algorithm,
capable of handling such disambiguation.

3. GRAPH MATCHING
An intuitive approach to disambiguate two artists with the
same name would be to check the titles of their releases,
and see if they match the titles of the releases in our seed
dataset. If by any chance they have releases with the same
title, we can check their track titles, and disambiguate using
them, and so on. In this section, we develop this idea and
give a formal specification of such an algorithm.

3.1 Offline graph matching
Consider the two datasets illustrated in fig. 1, with our seed
dataset on the left containing a single artist with the name
“Both”, and the target dataset on the right containing two
artists named “Both”. We model the two datasets as graphs,
with each edge represented as a triple (s, p, o).

As a first step, we compute initial similarity values between
all pairs of resources (s1, s2) and (o1, o2) such that (s1, p, o1) ∈
D1 and (s2, p, o2) ∈ D2. Such similarity values might be
calculated by a string similarity algorithm (such as the ones
described in section 2 of [12]) comparing literals directly at-



Table 1: Initial similarity map
Resource 1 Resource 2 Initial Similarity
1 4 1
1 7 1
2 5 0.9
3 6 0.8
2 6 0.1
3 5 0.1
2 8 0.1
3 8 0.1

Table 2: Possible graph mappings—(x, y) ≡ {x
owl:sameAs y}, and associated measures

Graphs Mapping Measures

G1 G2 MG1:G2a = {(1, 4), (2, 5), (3, 6)} 0.9
G1 G2 MG1:G2b = {(1, 4), (2, 6), (3, 5)} 0.4
G1 G3 MG1:G3a = {(1, 7), (2, 8)} 0.55
G1 G3 MG1:G3b = {(1, 7), (3, 8)} 0.55

tached to these resources. In our example, this produces the
results in table 1.

Next, we construct a graph similarity measure. In our ex-
ample, we consider the possible graph mappings in table 2.
Then, we associate a measure with such mappings: we sum
the similarity values s associated with each pair (x, y) and
we normalise it by the number of pairs in the mapping. In
our example, the resulting measures are in table 2.

Finally, we choose the mapping whose similarity measure is
the highest, optionally thresholding to avoid making map-
pings between graphs which are too dissimilar. In our ex-
ample, we choose MG1:G2a.

3.2 Linked Data context
Now, we apply this algorithm in a Linked Data [2] context,
where we discover our graphs as we go: the main idea being
that we update the graph mappings and their measures as
we update our local Semantic Web cache. This is necessary
because in general the size of the datasets D1 and D2 will
be prohibitive; if not for loading both datasets, then for
computing all the possible graph mappings between them.

Our starting point is now a single URI r in a dataset D1.
We try to find the corresponding s in a dataset D2, as well
as mappings of resources in the neighbourhood of r. We
illustrate this using the same example as the one in § 3.1:
we want to map the URI http://dbtune.org/jamendo/artist/5 to
the corresponding Musicbrainz URI. As part of the same
process we wish to map corresponding albums and tracks
for this artist.

In the following, we will use Named Graphs [5], in order to
track the provenance of a particular graph, and we let Gx

denote the graph retrieved when dereferencing x.

The first thing we do is to retrieve Gr, and extract a suitable
label l for r (using dc:title or foaf :name properties, etc).
Now, we need to access some potential candidates for s. To
do that, we use the same approach as described in § 2.2. We

issue a query (through a SPARQL end-point or custom web
service) to D2 which involves l and constraints over what we
are looking for. This gives us a list of resources.

For each sk in this list, we access Gsk . Now, for all pos-
sible graph mappings MGr :Gsk

,i, we compute a measure as
defined in § 3.1. If we can make a clear decision now (ie.
there is just one measure above our decision threshold), we
terminate and choose the corresponding graph mapping. If
not, we look for object properties p such that (r, p, o) ∈ Gr

and (sk, p, o′) ∈ Gsk , and we obtain Go and G′
o. 4 Then,

we update our possible graph mappings and the associated
measures. We iterate this process until we can make a deci-
sion (we have one unique mapping with measure above the
threshold), or until we can’t go any further (no unexplored
object properties). Practically, we also limit the maximum
number of iterations the algorithm may perform.

In our example, we first dereference http://dbtune.org/

jamendo/artist/5. We get access to the following facts: our
URI is identifying a musical band, it is called “Both”, and
it made5 two things: http://dbtune.org/jamendo/record/174

and http://dbtune.org/jamendo/record/33. We now look for
an artist named “Both” in the Musicbrainz dataset,
through the Musicbrainz web service6. This gives
us back two URIs: http://zitgist.com/music/artist/

5f9f2dfb-76f0-4872-ad7d-f9d84a908cb5 and http://zitgist.com/

music/artist/0781a3f3-645c-45d1-a84f-76b4e4decf6d. We derefer-
ence them: the first one identifies an artist named “Both”
which made two things, and the second one also an artist
named “Both” which made one thing.

We now consider two possible graph mappings (correspond-
ing to the two potential matches of our artist resource), with
two measures, both equal to 1. We continue looking for fur-
ther clues, as there is not yet any way to disambiguate be-
tween the two. We take the object property occurring in our
three graphs, foaf :made, and dereference all the objects of
this property that we currently know about. Our starting re-
source made two records, named “Simple Exercice” and “En
attendant d’aller sur Mars”. The first matching artist in the
Musicbrainz dataset made two records, named “Simple ex-
ercice” and “En attendant d’aller sur Mars...”. The second
matching artist made one record, named “The Inevitable
Phyllis”. We now update the possible graph mappings, and
reach the results in table 2. Now, we have one mapping
identifiably better than the others, with graph similarity
measure 0.9. We choose it, and hence derive the following
statements:

<http://dbtune.org/jamendo/artist/5> owl:sameAs
<http://zitgist.com/music/artist/

0781a3f3-645c-45d1-a84f-76b4e4decf6d>.
<http://dbtune.org/jamendo/record/174> owl:sameAs

<http://zitgist.com/music/record/
3042765f-67ba-49ef-ab28-45805fabef4a>.

<http://dbtune.org/jamendo/record/33> owl:sameAs
<http://zitgist.com/music/record/

fade0242-e1f0-457b-99de-d9fe0c8cbd57>.

4We could additionally consider triples of the form (o, p, r)
and (o′, p, sk).
5Captured through the foaf :made predicate
6See http://wiki.musicbrainz.org/XMLWebService



Having chosen a mapping we could go further, to also derive
such statements for the tracks in these two albums. An-
other possible extension of this algorithm is to perform lit-
eral lookups in D2 at each step (therefore providing new
possible graph mappings each time). This helps ensure we
still find the correct mapping in the case that our initial
literal lookup does not include the correct resource among
its results. For example, the correct target artist might be
listed as having a different name in D2 as in D1, such that
they do not feature in the results of our initial literal lookup.
However, we might have some clues about who this artist is
from the names of the albums they produced, and so per-
forming additional literal lookups (on the album titles) may
allow us to find the correct artist and hence the correct map-
ping. Such a variant of this algorithm is implemented in the
GNAT software described in § 4.2.

3.3 Algorithm definition
The algorithm described above can be expressed in the
following pseudo-code. We assume the existence of a
function string similarity(x, y) and define the following
additional functions:

function similarity(x, y) :

Extract a suitable label lx for x in Gx

Extract a suitable label ly for y in Gy

Return string similarity(lx, ly)

function lookup(x) :

Extract a suitable label lx for x in Gx

Perform a search for lx on D2

Return the set of resources retrieved from the search

function measure(M) :

Foreach (ri, rj) ∈ M

simi,j = similarity(ri, rj)

Return
P

i,j simi,j

function combinations(O1, O2) :

Return all possible combinations of

elements of O1 and elements of O2

e.g. combinations({1, 2}, {3, 4}) =

{{(1, 3), (2, 4)}, {(1, 4), (2, 3)}}

Our starting point is a URI r in D1 and a decision
threshold threshold. Our mapping pseudo-code is then
defined as:

Foreach sk ∈ lookup(r)
Mk = {(r, sk)}
measurek = measure(Mk)
simk = measurek/|Mk|

If simk > threshold for exactly one k, return Mk

Else, Mappings is the list of all Mk, and return
propagate(Mappings)

function propagate(Mappings) :
Foreach Mk ∈ Mappings:

measurek = measure(Mk)
Foreach p s.t. (∃(r, r′) ∈ Mk, ∃(r, p, o) ∈ Gr,

∃(r′, p, o′) ∈ Gr′ and ∀Map ∈ Mappings, (o, o′) /∈ Map):
Foreach (r, r′) ∈ Mk:

Ok,r,p is the list of all o such that (r, p, o) ∈ Gr

O′
k,r,p is the list of all o such that (r′, p, o) ∈ Gr′

Foreach Objmapk,i ∈
S

r combinations(Ok,r,p, O′
k,r,p):

simk,i = (measurek + measure(Objmapk,i))/(|Mk|+
|Objmapk,i|)

If no simk,i, fail
If simk,i > threshold for exactly one {k, i} pair, return

append(Mk, Objmapk,i)
Else, NewMappings is the list of all append(Mk, Objmapk,i),

and return propagate(NewMappings) (if the maximum number
of recursions is not reached, otherwise fail)

Now, we apply this pseudocode to our earlier “Both”
example (r = 1 = http://dbtune.org/jamendo/artist/5), with a
threshold of 0.8. This makes us go through the following
steps:

lookup(r) = {4, 7}
M1 = {(1, 4)}, sim1 = 1
M2 = {(1, 7)}, sim2 = 1
Mappings = {{(1, 4)}, {(1, 7)}}

propagate({{(1, 4)}, {(1, 7)}})
k = 1, p = foaf :made

O1,1,foaf :made = {2, 3}, O′
1,4,foaf :made = {5, 6}

Objmap1,1 = {(2, 5), (3, 6)}, Objmap1,2 = {(2, 6), (3, 5)}
sim1,1 = 0.9, sim1,2 = 0.4

k = 2, p = foaf :made
O2,1,foaf :made = {2, 3}, O′

2,7,foaf :made = {8}
Objmap2,1 = {(2, 8)}, Objmap2,2 = {(3, 8)}
sim2,1 = 0.55, sim2,2 = 0.55

Now, sim1,1 is the only simk,i above the threshold, we
therefore choose {(1, 4), (2, 5), (3, 6)} as our mapping, which
corresponds to the RDF code in § 3.2.

Of course, several heuristics could be added to this pseudo-code,
in order to improve the scalability of the algorithm. In practice,
we associate weights to properties, in order to start from the
most informative one (foaf :made, for example).

4. EXPERIMENTS
In this section, we detail two experiments using this algo-
rithm, and their respective evaluations. The first one deals
with the automatic interlinking of two online music datasets.
The second one deals with the linking of a personal music
collection towards corresponding web identifiers.

4.1 Linking two overlapping web datasets
In this section, we focus on a concrete interlinking which has
been achieved using this algorithm, between two overlapping
web datasets: Jamendo and Musicbrainz. We implemented
this algorithm7 in SWI-Prolog [11], with only one lookup
on the Musicbrainz end-point, at the artist level. Our algo-
rithm derived 10944 similarity statements for artist, record,
and track resources so far, which allows us to get detailed ed-
itorial information from Musicbrainz, and the actual audio
content, as well as tags, from the Jamendo dataset.

We focus our evaluation on artist resources. As we perform
only one lookup, at the artist level, no tracks or records
can be matched if the artist is not. In order to evaluate
the quality of the interlinking, we take a random sample
from the Jamendo dataset: we first collect every single artist
URI8, and we randomly select 60 from among them. Then,

7The source code of all the software mentioned
is available as part of the motools project:
http://sourceforge.net/projects/motools
8The results of such a SPARQL query are available at



Table 3: Evaluation of the Jamendo/Musicbrainz
interlinking

Link derived Link not derived
Correct 5 53
Incorrect 0 2

we run our mapping algorithm and manually check whether
the mappings are correct. Each tested resource therefore
falls into one of the following categories:

• An owl:sameAs link is derived : correct (same artist
in the Jamendo and in the Musicbrainz datasets) ;

• An owl:sameAs link is derived : incorrect (different
artists) ;

• No link is derived : correct (there is a corresponding
artist in the Musicbrainz dataset) ;

• No link is derived : incorrect (no corresponding artists
in the Musicbrainz dataset).

The results9, in terms of how many resources fall within each
of the above defined categories, are shown in table 3. In our
test dataset, the disambiguation was needed in 16 cases.
For example, one of the artist resources was named “Hair”,
which matches four resources within Musicbrainz, none of
them being the same band. The first case that failed is due
to an implementation mistake, failing to normalise the graph
similarity measures correctly when the target graph is bigger
than the seed one (in this case, the artist had two releases
on Musicbrainz, and just one on Jamendo). The second case
that failed is due to the fact that the Musicbrainz RDF is
outdated (the artist does not exist in the RDF dump, but
does exist in the Musicbrainz database).

4.2 Linking personal music collections
Personal music collections can also be a part of the web
of data. The Music Ontology [9] makes the same distinc-
tion as FRBR between manifestations (all physical objects
that bear the same characteristics, eg. a particular album)
and items (a concrete entity, eg. my copy of the album on
CD). A manifestation and a corresponding item are linked
through a predicate mo:available_as. Therefore, given a
set of audio files in a personal music collection, it is possible
to keep track of the set of statements linking this collection
to identifiers elsewhere in the Semantic Web which denote
the corresponding manifestations. These statements provide
a set of entry points to the Semantic Web, allowing access
to information such as the birth date of the artists responsi-
ble for items in the collection, geographical locations of the
recordings, etc.

GNAT is an implementation of automatic linking from a
personal audio collection to the Musicbrainz dataset—it uses
audio fingerprinting and available metadata to find corre-
sponding dereferencable identifiers, and then outputs RDF

http://dbtune.org:2105/sparql/?query=select%20distinct%20%3Fa

%20where%20%7B%3Fa%20a%20mo%3AMusicArtist%7D
9The detailed results, resource by resource, are available at
http://moustaki.org/resources/results.txt

Figure 2: Constructing a graph from local music meta-

data

statements making the links between local audio files and the
remote manifestation identifiers. The fingerprinting func-
tionality can be useful when the metadata available is par-
ticularly poor, but since it is highly dependent on the fin-
gerprinting service chosen, we concern ourselves here solely
with the metadata-based approach.

All modern audio encodings allow for the inclusion of meta-
data “tags” alongside audio data in a file, such that each
audio file can include the kind of editorial information con-
tained in the data sets described above. We can therefore
consider a reasonably well tagged personal music collection
to be just another music data set, apply the algorithm de-
scribed in § 3, and hence link each local audio file to a cor-
responding resource on the Semantic Web. GNAT uses the
variant discussed at the end of § 3.2 which maps artists, al-
bums and tracks, performing literal lookups at each stage.
For each local audio file, a simple seed graph is constructed
based on the artist, album, title and track number specified
in the file’s ID3 tag (see fig. 2 for an example). It proceeds
as set out in § 3.3 until a single best mapping is found. After
processing a directory of files in this way, GNAT outputs an
RDF file providing mo:available_as links from URIs in the
Zitgist publication of MusicBrainz data to the local audio
files. For example :

<http://zitgist.com/music/track/
1adfecb7-875f-4203-b3b1-8e2e643f94a2> mo:available_as

<file:///mnt/music/Artists/Nirvana/Bleach/track5.mp3>

Using this algorithm rather than one of the more näıve ap-
proaches should allow GNAT to be robust to various inac-
curacies in the local files’ metadata. We evaluated GNAT’s
behaviour in the face of such problems by taking a correctly-
tagged MP3 file of the Beatles track “I want to hold your
hand”and artificially introducing various mistakes. The Mu-
sicBrainz dataset lists no less than 25 releases for this track
by The Beatles, and dozens of artists with songs of the same
name. The correct set of metadata is shown in table 4 and
results are shown in table 5.

We can see that GNAT performs well in the face of inaccu-
rate metadata. The release chosen when the album field is
missing or set to a random string is arguably correct—it is



Table 5: Evaluation of GNAT’s linkage on particular cases
Change made Resulting mapping
Artist field missing Correct

Artist set to random string Correct

Artist set to “Beetles” Correct

Artist set to “Al Green” Mapped to Al Green’s cover version

Album field missing Mapped to correct track on the release

“The Capitol Albums, Volume 1 (disc 1:

Meet the Beatles!)”

Album set to random string

Album set to “Meat the Beatles”

Track set to random string Correct

Track set to “I Wanna Hold Your Hand” Correct

Table 4: Base (correct) metadata for GNAT evalu-
ation

Artist “The Beatles”
Album “Meet The Beatles!”
Title “I Want To Hold Your Hand”
Track Num 1

the same CD, released as part of a box set. One would hope
that the release “Meet the Beatles!” would be chosen in the
case of the album being misspelled.

With a practical implementation some trade-offs must be
made. In the case of setting the artist to “Al Green”, we
have two conflicting pieces of information (artist and album)
and our implementation here chooses the mapping for which
the artist matches. A more sophisticated version of GNAT
might consider other tracks in the current directory to es-
tablish that the track most likely comes from the Beatles
release rather than Al Green’s release.

Such links from a user’s own files to information on the Se-
mantic Web could be a significant step towards making data
on the Web available and relevant to people, but a user agent
must act on such links before they are directly useful to a
human. In the next section we describe a companion tool to
GNAT, designed to exploit the links GNAT produces.

4.3 Use-cases
For the links between a user’s files and Semantic Web re-
sources to be useful, an application must have some infor-
mation about the resources. The GNARQL program in the
motools project is beginning to explore some of the pos-
sibilities in this direction. The program loads in all the
owl:sameAs links produced by GNAT, dereferences the cor-
responding URIs, and then aggregates additional informa-
tion about those resources.

The basic mechanism for aggregating additional information
is to crawl outwards from the given resource, dereferencing
linked resources and adding their descriptions to the local
RDF store. In the simplest case, this crawling can be un-
guided, simply following all links regardless of the properties
used, and performing a breadth-first traversal of the Seman-
tic Web from all known resources.

More sophisticated crawling strategies may lead to better
aggregation for a user’s purposes. For example, GNARQL

can prioritise links which use properties from the Music On-
tology (or other specified namespaces). This helps ensure
that relevant information is prioritised over less obviously-
useful information.

Information relating to resources of interest may also be re-
trieved based on specific rules. For example, if we know
that the SBSimilarity service provides “similar track” infor-
mation about tracks by appending their Musicbrainz ID to
a given prefix10 , we can specify a rule in GNARQL for gen-
erating rdfs:seeAlso links from known tracks to the corre-
sponding documents in the SBSimilarity namespace. These
rule-derived links will then be followed as part of the crawl-
ing strategy, and their information added to the local RDF
store.

Naturally, the information held in GNARQL’s store need
not come solely from GNAT. In fact, any RDF data in the
designated directory tree will be loaded. In our research
group, this means that Chord Ontology11 transcriptions are
held alongside the MusicBrainz data retrieved from Zitgist
and social tag data retrieved from various websites.

To enable applications to take advantage of this aggregated
data, GNARQL provides a SPARQL endpoint. This frees
end-user applications from the need to themselves maintain
a database relating to the user’s music collection, and al-
lows multiple applications to benefit from a single store of
aggregated information.

Based on datasets available today, some example queries
such user interfaces might pass on to GNARQL include
“Find tracks which are performances of works by Russian
composers around the turn of the twentieth century”, “Find
me cover versions of rock songs in non-rock genres” or po-
tentially (by using information linked from a user’s FOAF
file) “Find me gigs by the artists I play frequently which fit
with my vacation schedule”.

To experiment with browsing the data aggregated by
GNARQL, we have developed a prototype user interface,
based heavily on the /facet program described in [6]. This
provides a web browser-based interface for exploring the
aggregated information, and performing simple facet-based

10eg. http://isophonics.net/music/signal/280b7fae-724e-4a6d-8e91-

6fe3f0a2bdad provides extra information about
http://zitgist.com/music/signal/280b7fae-724e-4a6d-8e91-6fe3f0a2

bdad
11See http://purl.org/ontology/chord/



queries. The map functionality allows the results of such
queries to be plotted geographically, as shown in fig. 3.

5. FUTURE WORK
5.1 Work on the interlinking algorithm
The algorithm proposed here has several limitations. Firstly,
it doesn’t specify any heuristics to use if the ontologies differ.
In this case,we would need a different methodology, perhaps
inspired by the approach described in [8]. Secondly, the al-
gorithm is designed for the case where a meaningful similar-
ity measure between pairs of individual resources is available
(here, using string similarity of labels attached to them with
certain predicates). In a linking scenario where there is no
particularly good similarity measure on individual resources
and the graph structure is therefore the most salient factor
for correct linking, another algorithm may be more appropri-
ate. In this case, Melnik’s “similarity flooding” [7] approach
could be used, which prioritises graph structure rather than
node similarity, relying on a post-processing stage to filter
out unsuitable mappings.

Based on these observations, further work developing the
interlinking algorithm could provide a framework for inter-
linking a wider variety of datasets.

5.2 Work on implementations
Currently, the GNAT tool implements two distinct ap-
proaches to finding manifestation URIs for local audio files.
One uses just the available metadata, and this approach is
described in § 4.2, above. Since audio metadata in personal
collections is frequently incomplete, inaccurate, or missing
entirely, this may not be sufficient. The other approach
therefore exploits audio fingerprinting [4] to try to identify
the track, and then if there is remaining ambiguity the local
metadata is used to choose a single URI.

Ideally, we could use the fingerprint of an audio file as just
another piece of information about the track, incorporat-
ing it into our graph mapping approach. In practice, the
main fingerprinting service available with a large support-
ing database, MusicIP’s MusicDNS service12, is relatively
opaque. Fingerprinting a track either returns a PUID, which
can be used to perform a search on MusicBrainz, or returns
no results. It therefore provides only a boolean test for sim-
ilarity, and some hidden decisions have been made by the
MusicDNS service using any available metadata. As a re-
sult, there is no obvious way to uniformly combine finger-
print information and local metadata in a graph mapping
approach.

A fingerprinting service which exposed the server-side
database and the actual process of matching a fingerprint
to a database entry could allow for some more sophisticated
linkage between personal audio collections and the Semantic
Web. We have some hopes that Last.fm’s recently launched
fingerprinting service might gather a large database and
make it freely available in a flexible way.

Although the core of the GNARQL tool is in place, more
work is required to explore different approaches to crawl-
ing. Also, since Semantic Web user interfaces are relatively

12See http://www.musicip.com/dns/

young, more work is required to fully exploit the function-
ality GNARQL is beginning to exhibit.

6. CONCLUSION
In this paper, we described several different methods for in-
terlinking Semantic Web datasets. We mentioned two näıve
approaches, leading to the construction of a more elaborate
algorithm, which takes into account not only the similarity
of the resources themselves but also the similarity of their
neighbours. Its main advantages are to provide a best-effort
mapping, without any need for a learning step (for which
we would have to manually interlink some resources), and to
work in a linked data environment, where new resources are
discovered as we get through the mapping process. We de-
scribed two implementations of this algorithm. The first one
was used to interlink artists, records, and tracks in two on-
line music datasets: Jamendo and Musicbrainz, and the sec-
ond one allows any user to link their personal music collec-
tion to corresponding identifiers in the Musicbrainz dataset.
We evaluated these two implementations separately.

Creating links between heterogeneous datasets can dramat-
ically enhance the usefulness of each. Using such links, a
Semantic Web user agent can jump from a band within the
Jamendo dataset to the corresponding resource in the Mu-
sicbrainz one, to the corresponding resource in DBpedia,
to its approximate geographic location, to the famous com-
posers born in that city, etc. However, if it is possible to
define such links manually for small datasets, it is impossi-
ble for large ones. We need methodologies to discover them
in an automated way. The techniques presented here are
far from perfect, but represent some initial efforts in this
direction.

7. DATASETS
The following datasets are mentioned throughout the paper:

Jamendo on DBTune: http://dbtune.org/jamendo/

BBC John Peel sessions: http://dbtune.org/bbc/peel/

SBSimilarity: http://www.isophonics.net/SBSimilarity

Musicbrainz RDF: http://zitgist.com/music/

DBpedia: http://dbpedia.org/

Geonames: http://geonames.org/

8. NAMESPACES
We use the following namespaces throughout our RDF ex-
amples:

@prefix mo: <http://purl.org/ontology/mo/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
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Figure 3: Navigating a personal audio collection using aggregated Semantic Web data
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