
Linking Enterprise Data
François-Paul Servant

RENAULT
FR EQV NOV 3 31 - 13 av Paul Langevin

92359 Le Plessis Robinson Cedex FRANCE
+33 (1) 76 84 38 30

francois-paul.servant@renault.com

ABSTRACT
The “Linking Open Data” community initiative contributed a
great deal to the concretization of the web of data, describing best
practice, publishing large sets of RDF data on the web, and
consequently giving birth to a new area of possibilities for
innovative mashups using these data. Enterprises’ information
systems too can be envisioned as a space of linked data. We
describe herein how we used Linked Data principles in a work
intended to foster adoption of semantic web technologies in our
company.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering

General Terms
Experimentation

Keywords
RDF in the enterprise, RDF based web services, Linking
Enterprise Data, Linked Data

1. INTRODUCTION
Integrating the disparate applications and data sources in a large
corporation is expensive, and using semantic web technologies
could dramatically cut down these costs: this is the “Business
Model for the Semantic Web” [1]. The lowest layer of semantic
web specifications, RDF - an open and mature standard – has
some very appealing properties in a corporate context [4]. RDF is
indeed a format built upon a simple, powerful, and well known
data model that makes exchanging, aggregating and querying
information easier.

However, despite their potential, adoption of semantic web
technologies seems to remain rather slow in the enterprise’s world
- at least this is our feeling about the situation at Renault. Not
being advertised by solution providers, they are very often simply
overlooked, or at best considered as “promising”, but not ready to
be used right now. They may even suffer from a negative
prejudice, being perceived as yet another technological hype,
whose promises, such as the easy exchange of information, have

already been heard many times before. Also, the current focus is
about “Web Services”, and people do not know what semantic
web technologies add to the picture - a data oriented viewpoint
that complements application oriented one provided by web
services. To put it shortly, people need to be explained that RDF
can make it easier to exchange and use the results computed by
services.

But things change! After a slow start, the Semantic Web finally
took off, and it is one merit of the “Linking Open Data”
community project to have proven that it was right now possible
to build on the Semantic Web stack, to publish large RDF data
sets, and to create applications using that data. In this respect, the
description of Linked Data principles and the accompanying how-
to undoubtedly were of big help [3].

Why not use the same strategy in the enterprise? A company’s
Information Systems can be envisioned as a space of Linked Data.
Convinced that Linked Data principles were good, also in a
corporate context, we decided to try to put them in practice and
foster adoption of semantic web technologies at Renault.

These principles provide effective solutions for two questions that
Renault regards as priorities for its IS architecture: data
repositories and services. Their implementation yields indeed an
architecture of REST services, easy to set up and to get connected
to. Our work should make that clear.

The cornerstone of Linked Data principles and of semantic web
architecture - the identification of data by the mean of URIs - is,
by itself, of great importance in the definition of information
systems. Not only because a sharable way of naming things is
needed to support exchange of information about those things: it
is indeed our observation that a frequent cause for problems is the
absence of proper identification of real world things. Those
problems tend to surface when legacy systems need to be
interconnected. In [6], we described such a situation, where
concepts central to the domain were not formally identified, thus
hindering efficient use of existing information resources, and
increasing the costs of data reconciliation.

In what will follow we describe what has been done in the work
we undertook:

• the publishing of a data repository as Linked Data,

• the implementation of a simple RDF browser,

• and the prototyping of access to the published data from outer
application.

We then discuss some noticeable points concerning Linked Data.
Copyright is held by the author/owner(s).

LDOW2008, April 22, 2008, Beijing, China.

mailto:francois-paul.servant@renault.com
mailto:francois-paul.servant@renault.com

2. PUBLISHING A DATA REPOSITORY AS
LINKED DATA

2.1 Previous experiences
We had some previous experience with the publishing of RDF
Data.

Semanlink, the first of these experiences, is a free tagging tool
developed by the author, where tags are SKOS-like concepts,
identified by URIs, all dereferenceable [5].

The second was a prototype repository of repair and diagnostic
operations, modeled with OWL, and developed to provide a
probabilistic diagnostic tool with data [6].

In these experiences however, implementing Linked Data
principles had not been the central point of the work. Our concern
in this new work was to emphasize the publishing and consuming
of linked data. The objectives were to better explore the topic, and
to highlight the benefits of the method, in a corporate context. We
also wanted to produce guidelines and sample code for Renault
developers: if Semantic Web technologies are to be used in
projects, we’ll need them trained to these techniques.

2.2 Chosen use case
As a use case we chose a repository created recently by the
department in charge of after-sales repair documentation.
Basically, it is a dictionary of the terms that documentation writers
may use when describing repair methods. The first purpose of this
repository is to enforce an homogenous naming scheme of things
throughout the whole documentation. These terms are translated
into the many different languages the documentation is produced
in, and they are classified in a SKOS-like hierarchy. Finally, the
repository also contains a link to a data set produced by a different
department, the department in charge of spare parts: a list of so-
called “generic parts” is associated to each such term. A “generic
part” is a part seen through its function in the car (for instance
“engine”, “air conditioning compressor”, “right front wing” ;
several spare part references correspond to a “generic part”).

We chose this repository for several reasons. First, it’s simple
enough, yet significant, and it is supposed to be well managed.
Second, there is no way to access its data from another
application: it is not available as a service, hence, publishing this
data as Linked Data corresponded to an actual need. Third, a
dump as XML is available. It was therefore easy to produce RDF
out of it. Finally, we could envision interesting use of this data,
that we would be able to demonstrate in the context of our work:

• access to repository’s RDF data from another application ;

• inclusion of RDFa data in repair methods generated as
XHTML pages (repair methods are produced as small chunks
of XML, and they contain references to the terms of the
repository. Having RDF statements inside the page allows for
interesting features using javascript)

2.3 Development environment
Java is the main language used for software developments at
Renault, and therefore the obvious choice for our work, given the
high quality of Jena’s implementation of the semantic web stack.

2.4 First steps
2.4.1 Minting URIs for the items of the repository
Minting URIs for the items of the repository was not a big deal: as
they already had an id, it was just a matter of choosing a
namespace where we would be able to publish the data: the URI
of an item of the repository is just the concatenation of that
namespace, of the item’s class name (the name of the table in the
database the item is primary key of) and of the item’s id.
Regarding the “generic parts”, which, as we mentioned earlier, do
not pertain to this repository, they should be published by their
owner (the parts department), under their own namespace. Of
course it is not the case and, to get started quickly, we minted
URIs for these external items inside the same namespace. It will
be possible to fix this later, for instance using owl:sameAs
statements to link them to their true URI when their natural owner
makes them available as Linked Data.

2.4.2 Hash or slash URIs
Another decision concerns the type of URI to use. Best choice
depends on the size of the repository. Hash URIs are simple, but
they suppose that the whole file gets downloaded when
dereferencing one of them. It is therefore better in our case to use
slash URIs, which can be dereferenced one by one.

2.4.3 Information and Non-Information Resources
Clearly, the items of the repository are “real-world things”, not
“information resources”: to respect the web architecture, we must
implement the “HTTP-range 14” resolution when dereferencing
them.

Using Non-Information Resources (NIR) requires the creation of
three different URIs: one for the resource itself, one for the RDF
data describing the resource, and one for an HTML description.
There are several ways that make sense for the naming of these
URIs. We used [namespace]:[resid] for the NIR, [namespace]:
[resid].rdf and [namespace]:[resid].html for the two corresponding
information resources.

2.4.4 Producing the RDF
An XML dump of the repository being available, it was easy to
produce RDF out of it - a really simple RDF, by the way, without
blank nodes, for instance.

2.5 The “LED” Servlet
URIs of the data set can be made dereferenceable by using a
servlet, the “context path” of which matches the namespace
chosen for the repository.

The servlet must of course have access to the RDF data of the
repository. As the data set contains no more than 60,000
statements, handling it as a Jena memory model, loaded at startup,
was not a problem.

2.6 Dereferencing URIs of NIRs
When an agent gets the URI of an NIR, the servlet must respond
with a 303 HTTP status code, and include a redirection to the URI
of an information resource that best fits the preferences expressed
in the “accept” HTTP header of the request - that is, in our case,
the URI of either the RDF or the HTML describing the NIR.

A servlet has access to the HTTP headers of a request. It can
therefore analyze its accept header to decide what it should return.

2.7 Answering requests for the RDF about an
NIR
When the client requests for the RDF data about an NIR, (that is,
when it dereferences the “.rdf” URI), answering is just a matter of
extracting the statements of interest from the Jena Model, and of
returning them, which is made easy by Jena serializers. As our
repository is very simple, there is no question about the content to
be returned: all statements of the form <nirURI,?,?> and
<?,?,nirURI>. We just added the statements defining the links
between the three resources nirURI, nirURI.rdf and nirURI.html.
We can think about including labels of linked resources. This can
be a useful optimization when we know that the RDF returned
will be displayed as HTML. We didn’t do it by default, only for
resources linked by certain properties. (The question of the
amount of information to be returned about one URI is briefly
discussed later: in other cases, the behavior adopted here would
lead to a uselessly huge number of statements).

2.8 Answering requests for the HTML about
an NIR
Generating HTML about a resource from its RDF description is of
course one important topic. It can be done on the server, for
instance using JSP. (That’s what we had done in our previous
experiments with Linked Data publishing, such as Semanlink).
But it can also be done on the client, thanks to the javascript RDF
parser made available with the Tabulator project [7].

2.9 Generating a page out of RDF data using
javascript on the client.
That’s the road we chose, because it allows for a nice architecture:

• it provides a clean separation of “Views” and “Model” (in
MVC parlance), with easier reuse of GUI widgets,

• it decreases the load on the server,

• it gives the possibility to change the display on the client
without sending a new request to the server,

• it allows to incrementally load RDF.

The principle is simple: a request for the HTML about an NIR
returns an HTML page which is almost an empty box (or a
template), containing a call to a javascript function that takes the
URI of the RDF data as argument. It is this javascript that
downloads the RDF data, and displays it.

2.9.1 Parsing problems with Internet Explorer
We faced a difficulty with Tabulator’s javascript RDF parser, as it
didn’t support Internet Explorer (neither 6 nor 7) at the time we
undertook our work (this was Tabulator 0.8). We had to correct
that, as most people use Explorer in our company, and it wouldn’t
be acceptable to propose a solution that doesn’t work with it. The
patch is available for download by interested people.

2.9.2 Generic display
In a first step, we didn’t do much more than displaying the RDF
about the described resource in a very generic way, that is listing
values, property by property.

2.9.3 Tree-like GUI widget
On important part of the repository is the classification of the
terms in a SKOS-like hierarchy. It is supposed to provide a way
for a human user to easily navigate inside the corpus of data and
help her finding the term she’s looking for. As navigating a

hierarchy of concepts to access data is so common, we developed
a dedicated tree-like widget, that we took care to make reusable
(Semanlink GUI for instance could use it, instead of having its
trees created by the server. We’ll see another reuse example later).

2.10 A simple RDF browser
We had not mentioned it yet, but what we described until now
supports only dereferencing URIs from our own data set, and we
had limited our GUI based on this constraint. It is indeed standard
javascript security to forbid connections to servers other than the
one the page comes from. It is possible to bypass this constraint,
as Tabulator does, using Firefox with one of its default settings
changed. This was not an option in our case: we had to work with
standard version and configuration of browsers. Dereferencing
URIs from other servers therefore meant implementing an usual
trick (namely, an HTTP proxy: requests to dereference URIs
outside our domain must be sent to the servlet, which forwards
them to the actual server, and then returns the result).

Implementing this trick is all what it needs to transform the
solution into a very simple, yet generic RDF browser: RDF can be
downloaded from anywhere, and displayed using javascript.

2.11 Getting linked data from another
application
An important aspect of Linked Data is the fact that it provides the
implementation of a service to which applications can connect
over HTTP to get data and use it as they see fit. It was important
to demonstrate that this can actually be done without difficulty, at
a low cost in terms of development for the client application. In
order to provide sample code, we implemented two kinds of
connections to the repository’s data: one in Java, using the Jena
API to parse and use the RDF, the other in Javascript.

For this demonstration, we used a completely unrelated tool that
we had built some time ago for the parts department. It is a web
application that computes and displays information about “generic
parts”: the user enters the code of a “generic part”, and the
application displays a list of corresponding spare part references.

The first feature we added to this application, in Java, is simply
the possibility to list the spare part references corresponding to a
term of our repository: the “part” servlet connects to the
repository, dereferences the term, parses the returned RDF,
extracts the corresponding list of “generic parts”, and for each,
computes the list of spare part references. For the second feature,
we reused our tree widget: the user can use it to navigate down the
hierarchy of concepts of our linked data set, to choose either a
“generic part” or a term, and to get the list of corresponding spare
part references.

2.12 Conclusion concerning this prototype
We implemented in Java and Javascript an example of a
repository published as linked data. It is composed of a servlet
that uses a Jena Model containing the RDF data, and that ensures
the dereferencing of URIs, respecting the principles regarding
Non-Information Resources. Basically, this servlet only produces
RDF output. The display in HTML is done in Javascript. This is
enough to build a very simple but generic RDF browser, and to
publish the repository’s data, providing the functionalities of a
REST web service. We demonstrated how to connect to it from a
program, and how to use its data.

We now plan to include a SPARQL endpoint, to complete our
accompanying how-to.

We think this is a fairly noticeable achievement, for a relatively
simple development, which is almost completely reusable, and
easily extensible. One obvious idea is to improve the RDF
browser, implementing, for instance, templates allowing to
customize the display depending on the type of the resource that
gets dereferenced.

The solution should be compared side by side with more
traditional or advertised ways to proceed, such as SOAP web
services. Let us just note some points. This approach respects the
web architecture, and this has its benefits: caching, for instance,
which is important for a repository like this one, whose data
barely changes. At the opposite of WS-* services, this service
only uses HTTP get, and therefore benefits from the standard
HTTP cache mechanism. The last point we would like to insist on
is related to the use of RDF, which is a generic data model. We do
not have to learn a special syntax to be able to use the service: we
directly manipulate the data, not a specialized API. Furthermore,
any chunck of RDF extracted from the repository could be
transfered from application to application, possibly aggregated
with more data, and still remain completely understandable with
just a standard RDF parser. This reduces the cost of development
in client applications (a question that seems to be sometimes
overlooked when speaking about services).

This concludes what had to be said about this prototype, and we
are now going to discuss some points about Linked Data, in no
particular order.

3. RDF FORMS
Quoting [2]: "The Semantic Web [...] is about making links, so
that a person or machine can explore the web of data." Beside
hypertext (“href”) links, forms are an important feature of the
web. How does this transpose to the web of data? Shouldn't there
be a standardized way to "include forms" in RDF data? This
would allow a server of RDF data to require some input, with a
well defined meaning, from its clients (should they be humans or
machines).

We had a use case in the field of technical after-sale
documentation. The repository of repair and diagnostic operations
mentioned earlier can be used by humans (mechanics looking for
information about how to repair a car) and by programs: for
instance a program that computes estimates needs to get the list of
parts that are necessary for a given repair on a given car, and the
time needed to perform the repair.

Suppose for instance that you have to replace the engine of a car,
and that you want to get information about how to do that. The
repository contains a concept "ex:engine_removal". Now, for any
given car, there is one and only one method to (correctly) take
apart the engine. You are not concerned by the information that
you would get by dereferencing "ex:engine_removal", rather by
the subset that is relevant to your car. This subset depends on the
characteristics of that car. It would not make sense to return all the
information about all the cars. Not only because it would be a
waste of bandwidth, but also because it would be difficult for the
client to understand this information. (This information would
indeed contain "conditional links", things such as: “if condition
then statement”, where condition is a Boolean function of the
characteristics of the car).

Typically, the service extracts from its underlying database the list
of all documents matching "ex:engine_removal". Each record has
a property "condition" (a Boolean function of the technical
characteristics of a car which returns true when the document is

relevant for a given car). To filter the list, the service has to
evaluate these Boolean expressions. Let's say that the engine
removal depends on the model and the engine type of the car. We
could ask the user to enter those values returning some RDF such
as:

<rdf:Description
 rdf:about"ex:engine_removal">
 <form:hasForm><form:Form>
 <form:param
 rdf:resource="ex:model"/>
 <form:param
 rdf:resource="ex:engine_type"/>
 </form:Form></form:hasForm>
</rdf:Description >

If the client program knows the conventions of this "form
vocabulary", it can understand that it has to provide value for
model and engine_type. How it determines these values varies (if
there is a human user, it can generate an HTML form). The point
is that the client program knows (or can discover) the exact
meaning of the parameters of the form. If it is able to provide the
answer, it will then construct a URL including the values and
dereference it to get the data it is looking for.

We chose this example, though it is a bit long, on purpose. The
European Commission has emitted a directive that requires from
automotive constructors that they publish their technical
documentation about repairs. A specification by an OASIS
technical committee describes how this should be achieved, using
RDF for metadata. The protocol for this situation could be
improved using “RDF Forms”.

We described here a form with a GET method, but POST methods
are of course interesting as well.

4.FINDING THE URIS OF “REAL WORLD
THINGS”
This is probably the major difficulty with Linked Data on the web.
The publishers of the large data sets of the LOD project
accomplished an important effort to interlink their data, and they
built a huge source of identities for real-world things. But how can
a user discover how to say “Paris” or “Hamlet”?

4.1 The case of enterprise data
Let’s note that this is not really a problem in the corporate context.
Companies indeed do have large and standardized vocabularies,
that are shared throughout their whole organization, to name many
of the things they manipulate in their operations. Of course,
everything is not perfect: different departments sometimes give a
different meaning to the same term, and this may be a cause of
misunderstandings and problems. We believe that adopting URIs
for identification would reduce the number of such cases: URIs
including the designation of their “owner”, they are incentive to
check for the real meaning of the thing before deciding to use it.

4.2 On the web
The question is of first importance. If we don’t have tools to help
a user discover the URIs for things, she won’t be able to write
statements using a shared vocabulary. Best she’ll be able to do is
to write statements using her own vocabulary. She shouldn’t be
left helpless, because this hurts the chances of the semantic web to
be largely adopted.

We think that the publisher of the massive linked data sets should
try to provide tools to help connect to them, and find the URI of
things.

The problem is of course difficult, but pragmatic tools can be of
great help. If I type “Paris” in Wikipedia, I get to a page about the
capital of France, with a link to a disambiguating page.
Implementing such a service, returning its results as a small chunk
of RDF, should not be a problem for the large LOD projects, and
this would be very useful.

More complex tools can be thought of. If a data set provides a
SPARQL endpoint, some interesting tools can be developed by
third parties.

4.3 Semanlink
We will try to participate to this effort. As noted earlier,
Semanlink publishes data as RDF, following Linked Data
principles. We hope to be able in the next months

• to work on the linking of Semanlink to the LOD data sets,

• to make results of the tag search available as RDF,

• to build tools that help discover whether a given concept is
actually used in a Semanlink data set,

• and to work on the interlinking of several Semanlink databases.
We hope that this will eventually provide a test bed for semi-
automatic reconciliations of portions of independently
developed vocabularies.

4.4 How to get the URI of an NIR when you
know the URI of the corresponding HTML ?
Most of the time, what you see of an NIR is the HTML page that
gets displayed in your standard web browser when dereferencing
its URI. How do you get back from this HTML to the URI of the
NIR? Today, there is no easy way to get it. If Linked Data
publishers follow the recommendations of [3], the URI of the
RDF data describing the NIR can be extracted from the HTML
page, but not the URI of the NIR. If you’re interested in it (for
instance because you want to write a statement involving this
NIR), you have to download the RDF, parse it, and find the
statement linking the NIR to the HTML. It would be easier to
have the statement describing the link between the HTML page
and the NIR directly in the HTML (probably as RDFa) We think
that suggesting data publishers to do so would be a nice addition
to the “How to Publish Linked Data on the Web” document [3].

5. AMOUNT OF DATA TO RETURN WHEN
A URI GETS DEREGERENCED
This is a known issue with Linked Data, with several aspects. In
particular, it is not always practical, or wise, to blindly return all
triples containing the URI that is dereferenced. This information
can be huge, or computing the statements involving some special
properties may be a heavy task. So, returning all the statements
that a server is able to provide can be a waste of bandwidth, or of
server resources, if the client is not interested with them. What

could the server do, when such a URI gets dereferenced, to avoid
waste (that is, to avoid returning all statements involving the
URI), yet let the client know that more information is available
and could be returned if needed? Some interesting suggestions
were made, based basically on the idea: “look up there to get
triples involving that property”. These suggestions imply a new
convention (that is, the definition of a few properties). We would
appreciate an agreement of the Linked Data community on such a
convention.

6. CONCLUSION
We are convinced that Linked Data principles are good for the
web as well as for companies’ information systems. In a work of
evangelization about Semantic Web technologies inside our
company, we published as linked data a repository, without
difficulty. We showed how to connect to the resulting service from
an outer application. The code written is largely reusable, and
expandable. And we will soon reuse it to publish new sets of
linked data. For instance, we will shortly implement the
publishing as RDF of data served by a SOAP web service.
Increasing the number of use cases should convince about the
flexibility of the method. We’ll continue our work in the field of
after-sales technical documentation. This field looks like a typical
use case for Semantic Web technologies, given the number of
business objects that have to be shared among the many systems
involved, in a corporation-wide process. But it is also a field that
is slow to evolve, partly for the same reasons.

Concerning Linked Data on the web, we think that the community
should work on defining a small vocabulary to better handle some
problems that surface (such as the amount of data to return when
dereferencing a URI), or to provide new functionalities (such as
“RDF Forms”).

7. REFERENCES
[1] Berners-Lee, T., “Business Model for the Semantic Web",

2001 http://www.w3.org/DesignIssues/Business
[2] Berners-Lee, T. “Linked Data”, http://www.w3.org/

DesignIssues/LinkedData.html
[3] Bizer, C., Cyganiak, R., Heath, T., “How to Publish Linked

Data on the Web” http://www4.wiwiss.fu-berlin.de/bizer/
pub/LinkedDataTutorial/

[4] Feigenbaum, L., “Semantic Web Technologies in the
Enterprise”, 2006 http://www.thefigtrees.net/lee/blog/
2006/11/semantic_web_technologies_in_t.html

[5] Semanlink http://www.semanlink.net
[6] Servant, FP "Semantic Web Technologies in Technical

Automotive Documentation" - CEUR-WS.org/Vol-258 -
OWL: Experiences and Directions 2007 http://
ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/
Vol-258/paper04.pdf

[7] “Tabulator: Generic Data Browser” http://www.w3.org/2005/
ajar/tab

http://www.w3.org/DesignIssues/Business
http://www.w3.org/DesignIssues/Business
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www.thefigtrees.net/lee/blog/2006/11/semantic_web_technologies_in_t.html
http://www.thefigtrees.net/lee/blog/2006/11/semantic_web_technologies_in_t.html
http://www.thefigtrees.net/lee/blog/2006/11/semantic_web_technologies_in_t.html
http://www.thefigtrees.net/lee/blog/2006/11/semantic_web_technologies_in_t.html
http://www.semanlink.net
http://www.semanlink.net
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper04.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper04.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper04.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper04.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper04.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper04.pdf

