A Case Study on Linked Data Generation and Consumption Jianqiang Li, Yu Zhao NEC Labs China {lijianqiang, zhaoyu}@research.nec.com.cn #### **Overview** - Motivation and goal - Our experimental study - Linked data generation - Consuming the linked data for web search improvement - Conclusion and future work #### **Motivation** - The existence of large amounts of interlinked semantic data is a prerequisite for making the Semantic Web come true. - ➤ Current linked data construction relies heavily on the already existing (structured) data sources and the efforts made by the data publishers. - The Web provides an unprecedented opportunity and fertile ground for knowledge discovery - ➤ Our goal is to extract the inherent statements implied in the hyperlinks as a form of semantic data and make the data available to be consumed by various Semantic Web applications #### **Our Experimental Work** - The case study includes two parts: - Semantic data construction - Extracting (shallow) semantic data about the interlinked web documents as a new source of linked data - Linked data consumption for web search improvement - The semantic data provide important indications on the web page content - The inference is incorporated implicitly into the web page retrieval process ## **Linked Data Generation (1)** - Where to find the semantic data - Hyperlink differentiation - Hierarchical hyperlink (intra-site) - It exists largely in the local website, are mainly used for organizing the collection of web pages - It is used for building the local topic hierarchy - Reference hyperlink (inter-site) - It represents citations and are implicitly utilized by the web page author for web page recommendation - It reflects the inter-linkage relation between multiple topic hierarchy - Pure navigation hyperlink (intra-site) - Its major role is to provide the shortcut to facilitate the readers to jump from one page to another page. - Noise information # **Linked Data Generation (2)** #### -How to extract the semantic data - Hierarchical relation identification - Its goal is to remove the pure navigational hyperlinks (the direct/indirect sibling and upward hyperlinks) from the intra-site hyperlink collection - The method includes two steps: - -Syntactical URL analysis: - •Utilizing the information implied in http://[host]/[path]/[file]#[fragment]; - -Semantic hyperlink analysis: - •Some heuristics are adopted, the core is shown in the schematic diagram: the hyperlinks pointing to the common web page set is identified as pure navigational links (noise information) ## **Linked Data Generation (3)** - How to publish the linked data - The WDT vocabularies for the semantic data representation • The semantic data (hierarchical relation between web pages) regarding to the website is specified by the WDT framework, and the various datasets are interlinked with reference relations. Such data is also connected to document web. #### **Linked Data Generation (4)** - Example of the resultant linked data - A segment of the topic hierarchy of stanford.edu ``` # Topic "Prot ég ê" http://www.nec.com.cn/lab/WDT/data/stanford.edu#34211 rdf:label "The Prot ég é Ontology Editor and Knowledge Acquisition System"; rdf:type wdt:Topic; foaf:isPrimaryTopicOf <http://protege.stanford.edu> . # Topic "Overview of Prot ég é" http://www.nec.com.cn/lab/WDT/data/stanford.edu#34212 rdf:label "What is Prot ég é?"; rdf:type wdt:Topic; foaf:isPrimaryTopicOf http://protege.stanford.edu/overview/. # Hierarchical relation between above two topics http://www.nec.com.cn/lab/WDT/data/stanford.edu#34302 rdf:label "OVERVIEW"; rdf:type wdt:HierarchicalRelation; wdt:mainTopic < http://www.nec.com.cn/lab/WDT/data/stanford.edu#34211>; wdt:subTopic < http://www.nec.com.cn/lab/WDT/data/stanford.edu#34212>. ``` ## **Linked Data Generation (5)** - Example of the resultant linked data - An example of a reference relation: ``` # Reference relation between prot & éand OWL http://www.nec.com.cn/lab/WDT/data/stanford.edu#34311 rdf:label "OWL Ontology Web Language Guide"; rdf:type wdt:ReferenceRelation; wdt:refereeTopic < http://www.nec.com.cn/lab/WDT/data/stanford.edu#34212; wdt:referredTopic < http://www.nec.com.cn/lab/WDT/data/w3.org#1421. ``` #### Link from data to document: ``` <rdfs:isDefinedBy rdf:resource="http://www.w3.org/TR/2004/REC-owl-semantics-20040210/" /> ``` ## **Linked Data Consumption (1)** - -Building a new resource from the generated linked data - Hierarchical Navigation Path (HNP): HNP=<TL, UL, C> • An example: navigation path in green, TL=T1+A1+T2+A2+T3+A3+T4: schools Stanford University->faculty->Stanford **University: Faculty->Faculty position-** >Stanford University: open faculty position->school of engineering->Stanford School of Engineering: working at stanford->computer science->Jobs UL=U1+U2+U3+U4: http://www.stanford.edu/ - -http://www.stanford.edu/home/faculty/ - -http://www.stanford.edu/home/faculty/positions.html - -http://soe.stanford.edu/about/jobs.html-http://cs.stanford.edu/Info/jobs.php C=Domain/host_Name: Stanford ## **Linked Data Consumption (2)** - Exploiting the HNP for web page ranking - A three-step-procedure to realize the query-path match for Web page ranking: - Using link structure analysis of the Web to estimate the rank value RW for each website W at global level, i.e., the relative importance of W; - Computing the rank value *Rpath* for each HNP *path* according to its located web site and the query; - The pathrank value *Rpage* of a web page *page* is determined by all its corresponding HNPs (or together with the page's content-based score). ## **Linked Data Consumption (3)** #### - Evaluation - The experiments are conducted on 30+ company websites and *stanford.edu* - For hierarchical relation identification, roughly 80%+ is correct; For the HNP, the recall rate is 90%+ and the precision is 70-80%. - For webpage retrieval (the website search engine in *stanford.edu* as the baseline): | | S@5 | S@50 | P@10 | P@20 | SP | |---------------------|-----|------|------|------|-----| | stanford.edu search | 64% | 74% | 82% | 79% | 73% | | PathRank1 | 78% | 86% | 75% | 69% | 77% | | PathRank1+content | 76% | 90% | 81% | 72% | 78% | | PathRank2 | 85% | 89% | 88% | 71% | 81% | | PathRank2+content | 88% | 92% | 86% | 77% | 87% | • The results show that through exploiting the (shallow) semantic data, our pathbased approach can improve the accuracy of web page retrieval significantly #### **Conclusion and Future Work** - A method for constructing the (shallow) semantic data from the Web is proposed - An alternative view to make a contribution to the vision of Web of Data - The experiment on consuming the resulting linked data to enhance web page retrieval is studied - Since the inference is incorporated inside implicitly, the results is improved promisingly. - Future work will focus more on refining the (shallow) semantic data and their consumption, e.g.,: - Search result organization - Object mining from the Web - Hierarchy learning from the Web **-** ... # Empowered by Innovation