A Case Study on Linked Data Generation and Consumption

Jianqiang Li, Yu Zhao
NEC Labs China
{lijianqiang, zhaoyu}@research.nec.com.cn
Overview

• Motivation and goal
• Our experimental study
 – Linked data generation
 – Consuming the linked data for web search improvement
• Conclusion and future work
Motivation

- The existence of large amounts of interlinked semantic data is a prerequisite for making the Semantic Web come true.
 - Current linked data construction relies heavily on the already existing (structured) data sources and the efforts made by the data publishers.

- The Web provides an unprecedented opportunity and fertile ground for knowledge discovery
 - Our goal is to extract the inherent statements implied in the hyperlinks as a form of semantic data and make the data available to be consumed by various Semantic Web applications
Our Experimental Work

The case study includes two parts:

- Semantic data construction
 - Extracting (shallow) semantic data about the interlinked web documents as a new source of linked data

- Linked data consumption for web search improvement
 - The semantic data provide important indications on the web page content
 - The inference is incorporated implicitly into the web page retrieval process
Linked Data Generation (1)
- Where to find the semantic data

- Hyperlink differentiation
 - Hierarchical hyperlink (intra-site)
 • It exists largely in the local website, are mainly used for organizing the collection of web pages
 • It is used for building the local topic hierarchy
 - Reference hyperlink (inter-site)
 • It represents citations and are implicitly utilized by the web page author for web page recommendation
 • It reflects the inter-linkage relation between multiple topic hierarchy
 - Pure navigation hyperlink (intra-site)
 • Its major role is to provide the shortcut to facilitate the readers to jump from one page to another page.
 • Noise information
Linked Data Generation (2)
- How to extract the semantic data

- Hierarchical relation identification
 - Its goal is to remove the pure navigational hyperlinks (the direct/indirect sibling and upward hyperlinks) from the intra-site hyperlink collection

- The method includes two steps:
 - Syntactical URL analysis:
 - Utilizing the information implied in \(http://[host]/[path]/[file]#[fragment] \);
 - Semantic hyperlink analysis:
 - Some heuristics are adopted, the core is shown in the schematic diagram: the hyperlinks pointing to the common web page set is identified as pure navigational links (noise information)
Linked Data Generation (3)
- How to publish the linked data

- The WDT vocabularies for the semantic data representation

- The semantic data (hierarchical relation between web pages) regarding to the website is specified by the WDT framework, and the various datasets are inter-linked with reference relations. Such data is also connected to document web.
Linked Data Generation (4)
- Example of the resultant linked data

• A segment of the topic hierarchy of stanford.edu

```xml
# Topic "Protégé"
<http://www.nec.com.cn/lab/WDT/data/stanford.edu#34211>
  rdf:label "The Protégé Ontology Editor and Knowledge Acquisition System" ;
  rdf:type wdt:Topic ;

# Topic "Overview of Protégé"
<http://www.nec.com.cn/lab/WDT/data/stanford.edu#34212>
  rdf:label "What is Protégé?" ;
  rdf:type wdt:Topic ;
  foaf:isPrimaryTopicOf <http://protege.stanford.edu/overview/> .

# Hierarchical relation between above two topics
<http://www.nec.com.cn/lab/WDT/data/stanford.edu#34302>
  rdf:label "OVERVIEW" ;
  rdf:type wdt:HierarchicalRelation ;
  wdt:mainTopic <http://www.nec.com.cn/lab/WDT/data/stanford.edu#34211> ;
```
 Linked Data Generation (5)
- Example of the resultant linked data

• An example of a reference relation:

 # Reference relation between protégé and OWL
 <http://www.nec.com.cn/lab/WDT/data/stanford.edu#34311>
 rdf:label "OWL Ontology Web Language Guide" ;
 rdf:type wdt:ReferenceRelation ;
 wdt:refereeTopic < http://www.nec.com.cn/lab/WDT/data/stanford.edu#34212> ;

• Link from data to document:

 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/TR/2004/REC-owl-semantics-20040210/" />
Linked Data Consumption (1)
- Building a new resource from the generated linked data

- Hierarchical Navigation Path (HNP): HNP=<TL, UL, C>

- An example:

navigation path in green,

TL=T1+A1+T2+A2+T3+A3+T4:
Stanford University->faculty->Stanford University: Faculty->Faculty position->Stanford University: open faculty position->school of engineering->Stanford School of Engineering: working at stanford->computer science->Jobs

UL=U1+U2+U3+U4:
http://www.stanford.edu/
- http://www.stanford.edu/home/faculty/
- http://www.stanford.edu/home/faculty/positions.html

C=Domain/host_Name: Stanford
Linked Data Consumption (2)
- Exploiting the HNP for web page ranking

• A three-step-procedure to realize the query-path match for Web page ranking:
 – Using link structure analysis of the Web to estimate the rank value RW for each website W at global level, i.e., the relative importance of W;
 – Computing the rank value R_{path} for each HNP path according to its located web site and the query;
 – The pathrank value R_{page} of a web page page is determined by all its corresponding HNPs (or together with the page’s content-based score).
Linked Data Consumption (3)

- Evaluation

• The experiments are conducted on 30+ company websites and stanford.edu
• For hierarchical relation identification, roughly 80%+ is correct; For the HNP, the recall rate is 90%+ and the precision is 70-80%.
• For webpage retrieval (the website search engine in stanford.edu as the baseline):

<table>
<thead>
<tr>
<th></th>
<th>S@5</th>
<th>S@50</th>
<th>P@10</th>
<th>P@20</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>stanford.edu search</td>
<td>64%</td>
<td>74%</td>
<td>82%</td>
<td>79%</td>
<td>73%</td>
</tr>
<tr>
<td>PathRank1</td>
<td>78%</td>
<td>86%</td>
<td>75%</td>
<td>69%</td>
<td>77%</td>
</tr>
<tr>
<td>PathRank1+content</td>
<td>76%</td>
<td>90%</td>
<td>81%</td>
<td>72%</td>
<td>78%</td>
</tr>
<tr>
<td>PathRank2</td>
<td>85%</td>
<td>89%</td>
<td>88%</td>
<td>71%</td>
<td>81%</td>
</tr>
<tr>
<td>PathRank2+content</td>
<td>88%</td>
<td>92%</td>
<td>86%</td>
<td>77%</td>
<td>87%</td>
</tr>
</tbody>
</table>

• The results show that through exploiting the (shallow) semantic data, our path-based approach can improve the accuracy of web page retrieval significantly.
Conclusion and Future Work

• A method for constructing the (shallow) semantic data from the Web is proposed
 – An alternative view to make a contribution to the vision of Web of Data
• The experiment on consuming the resulting linked data to enhance web page retrieval is studied
 – Since the inference is incorporated inside implicitly, the results is improved promisingly.
• Future work will focus more on refining the (shallow) semantic data and their consumption, e.g.,:
 – Search result organization
 – Object mining from the Web
 – Hierarchy learning from the Web
 – …
Empowered by Innovation

NEC