

Automatic Interlinking of music datasets
on the Semantic Web

Yves Raimond, Christopher Sutton, Mark Sandler
Centre for Digital Music

Queen Mary, University of London
LDOW 2008, 22th of April

Linked Data publishing
 D2R, Virtuoso
 P2R
 Triplify
 Pubby or URISpace + SPARQL end-point
 API wrappers:

 RDF Book Mashup
 Last.fm or MySpace on DBTune
 Virtuoso Sponger

 Vim and .htaccess :-)

And now?

Communities can be helpful

Algorithms can be helpful too

In context

Problem

 Automatically find the overlapping parts
between two datasets DA and DB

 http://zitgist.com/music/artist/0781a3f3-645c-45d1-a84f-76b4e4dec
and http://dbtune.org/jamendo/artist/5

 http://zitgist.com/music/record/fade0242-e1f0-457b-99de-d9fe0c8c
and http://dbtune.org/jamendo/record/33

 Publish corresponding owl:sameAs links
 We want a really low rate of false-positives

 Violet performed by Hole in a John Peel session IS NOT the same
as the flower

 The French band Both is not the same as the American one

Automatic interlinking – Try 1

 Simple literal lookups

 Query DB using such labels

Automatic interlinking – Try 1

Automatic interlinking – Try 2

 Let's restrict the range of the resources we're
looking for...

PREFIX p: <http://dbpedia.org/property/>
SELECT ?r WHERE {
?r ?p "Violet"@en.
?r a <http://dbpedia.org/class/yago/Song107048000> }

Automatic interlinking – Try 2

 Problems:
 Manually defining constraints is painful
 They are two artists named ”Both” in Musicbrainz
 Two songs titled ”Mad Dog” in Dbpedia (by Elastica and Deep

Purple)
 Etc. etc.

Graph matching algorithm

 An algorithm to match a whole RDF graph in
DA to a whole graph in DB

 Intuitive idea:

Two artists that made albums titled similarly
are likely to be similar. If the tracks on these
albums are titled similarly, they are even more
likely to be similar. Etc.

 We explore linked data as long as we don't
have enough clues

 Full pseudo-code in the paper

Step 0 – Starting point

 We pick a resource in DA

Step 1 - Lookup

 Dereference starting resource, extract a label
 Lookup DB as in Try 1 or 2

Step 2 – Similarity measure

Two above the similarity threshold, we can't make a choice

 Derive possible graph mappings
 Sum of the corresponding resource similarities,

normalised by the number of nodes in the graph
mapping

Step 3 – Explore

Step 4 – Update similarity

One above our similarity threshold, we make a choice

Experiment 1

 Linking Jamendo to Musicbrainz
 Prolog implementation (ldmapper in the motools sourceforge

project)
 Evalution: manually checking 60 linkage

 No incorrect links drawn
 53 links not drawn (no matching artists in Musicbrainz)
 5 correct links drawn
 2 links not drawn that should have been drawn

 Due to the fact that the RDF version of Musicbrainz is outdated
 Example

Experiment 2

 Evaluation of GNAT in the paper
 Demo

Questions?

