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Linked Data publishing
 D2R, Virtuoso
 P2R
 Triplify
 Pubby or URISpace + SPARQL end-point
 API wrappers:

 RDF Book Mashup
 Last.fm or MySpace on DBTune
 Virtuoso Sponger

 Vim and .htaccess :-)



  

And now?



  

Communities can be helpful



  

Algorithms can be helpful too



  

In context



  

Problem

 Automatically find the overlapping parts 
between two datasets DA and DB

 http://zitgist.com/music/artist/0781a3f3-645c-45d1-a84f-76b4e4dec
and http://dbtune.org/jamendo/artist/5

 http://zitgist.com/music/record/fade0242-e1f0-457b-99de-d9fe0c8c
and http://dbtune.org/jamendo/record/33

 Publish corresponding owl:sameAs links
 We want a really low rate of false-positives

 Violet performed by Hole in a John Peel session IS NOT the same 
as the flower

 The French band Both is not the same as the American one



  

Automatic interlinking – Try 1

 Simple literal lookups

 Query DB using such labels



  

Automatic interlinking – Try 1



  

Automatic interlinking – Try 2

 Let's restrict the range of the resources we're 
looking for...

PREFIX p: <http://dbpedia.org/property/>
SELECT ?r WHERE {
?r ?p "Violet"@en.
?r a <http://dbpedia.org/class/yago/Song107048000> }



  

Automatic interlinking – Try 2

 Problems:
 Manually defining constraints is painful
 They are two artists named ”Both” in Musicbrainz
 Two songs titled ”Mad Dog” in Dbpedia (by Elastica and Deep 

Purple) 
 Etc. etc.



  

Graph matching algorithm

 An algorithm to match a whole RDF graph in 
DA to a whole graph in DB

 Intuitive idea:

Two artists that made albums titled similarly 
are likely to be similar. If the tracks on these 
albums are titled similarly, they are even more 
likely to be similar. Etc.

 We explore linked data as long as we don't 
have enough clues

 Full pseudo-code in the paper



  

Step 0 – Starting point

 We pick a resource in DA



  

Step 1 - Lookup

 Dereference starting resource, extract a label
 Lookup DB as in Try 1 or 2



  

Step 2 – Similarity measure

Two above the similarity threshold, we can't make a choice

 Derive possible graph mappings
 Sum of the corresponding resource similarities, 

normalised by the number of nodes in the graph 
mapping  



  

Step 3 – Explore



  

Step 4 – Update similarity

One above our similarity threshold, we make a choice



  

Experiment 1

 Linking Jamendo to Musicbrainz
 Prolog implementation (ldmapper in the motools sourceforge 

project)
 Evalution: manually checking 60 linkage

 No incorrect links drawn
 53 links not drawn (no matching artists in Musicbrainz)
 5 correct links drawn
 2 links not drawn that should have been drawn

 Due to the fact that the RDF version of Musicbrainz is outdated
 Example



  

Experiment 2

 Evaluation of GNAT in the paper
 Demo



  

Questions?


