
Silk – A Link Discovery Framework for the Web of Data
Julius Volz

Chemnitz University of
Technology

Straße der Nationen 62
D-09107 Chemnitz

volz@hrz.tu-chemnitz.de

Christian Bizer
Freie Universität Berlin

Web-based Systems Group
Garystr. 21

D-14195 Berlin
chris@bizer.de

Martin Gaedke
Chemnitz University of

Technology
Straße der Nationen 62

D-09107 Chemnitz
gaedke@cs.tu-chemnitz.de

Georgi Kobilarov
Freie Universität Berlin

Web-based Systems Group
Garystr. 21

D-14195 Berlin
georgi.kobilarov@fu-berlin.de

ABSTRACT
The Web of Data is built upon two simple ideas: Employ the RDF
data model to publish structured data on the Web and to set
explicit RDF links between entities within different data sources.
This paper presents the Silk – Link Discovery Framework, a tool
for finding relationships between entities within different data
sources. Data publishers can use Silk to set RDF links from their
data sources to other data sources on the Web. Silk features a
declarative language for specifying which types of RDF links
should be discovered between data sources as well as which
conditions entities must fulfill in order to be interlinked. Link
conditions may be based on various similarity metrics and can
take the graph around entities into account, which is addressed
using a path-based selector language. Silk accesses data sources
over the SPARQL protocol and can thus be used without having
to replicate datasets locally.

Categories and Subject Descriptors

H.2.3 [Database Management]: Languages

General Terms
Measurement, Languages

Keywords
Linked data, link discovery, record linkage, similarity, RDF

1. INTRODUCTION
The Web of Data [1] has grown significantly over the last two
years and has started to span data sources from a wide range of
domains such as geographic information, people, companies,
music, life-science data, books, and scientific publications.

While there are more and more tools available for publishing
Linked Data on the Web [2], there is still a lack of tools that
support data publishers in setting RDF links to other data sources
on the Web. The Silk - Link Discovery Framework contributes to
filling this gap. Using the declarative Silk - Link Specification
Language (Silk-LSL), data publishers can specify which types of
RDF links should be discovered between data sources as well as
which conditions data items must fulfill in order to be interlinked.
These link conditions can apply different similarity metrics to
multiple properties of an entity or related entities which are
addressed using a path-based selector language. The resulting
similarity scores can be weighted and combined using various
similarity aggregation functions. Silk accesses data sources via the
SPARQL protocol and can thus be used to discover links between
local and remote data sources.

The main features of the Silk framework are:

 it supports the generation of owl:sameAs links as well as
other types of RDF links.

 it provides a flexible, declarative language for specifying link
conditions.

 it can be employed in distributed environments without
having to replicate datasets locally.

 it can be used in situations where terms from different
vocabularies are mixed and where no consistent RDFS or
OWL schemata exist.

 it implements various caching, indexing and entity pre-
selection methods to increase performance and reduce
network load.

This paper is structured as follows: Section 2 gives an overview of
the Silk - Link Specification Language along a concrete usage
example. Section 3 reports the results of applying Silk to discover
links between several data sources within the LOD data cloud1.
We describe the implementation of the Silk framework in Section
4 and review related work in Section 5.

2. LINK SPECIFICATION LANGUAGE
The Silk - Link Specification Language (Silk-LSL) is used to
express heuristics for deciding whether a semantic relationship
exists between two entities. The language is also used to specify
the access parameters for the involved data sources, and to
configure the caching, indexing and preselection features of the
framework. Link conditions can use different aggregation
functions to combine similarity scores. These aggregation
functions as well as the implemented similarity metrics and value
transformation functions were chosen by abstracting from the link
heuristics that were used to establish links between different data
sources in the LOD cloud.

Figure 1 contains a complete Silk-LSL example. In this particular
use case, we want to discover owl:SameAs links between the
URIs that are used by DBpedia2 and by GeoNames3 to identify
cities. In line 12 of the link specification, we thus configure the
<LinkType> to be owl:sameAs.

1 http://esw.w3.org/topic/SweoIG/TaskForces/

CommunityProjects/ LinkingOpenData
2 http://dbpedia.org/About
3 http://www.geonames.org/ontology/

Copyright is held by the author/owner(s).
LDOW 2009, April 20, 2009, Madrid, Spain.

01 <Silk>

02 <DataSource id="dbpedia">

03 <EndpointURI>http://dbpedia.org/sparql</EndpointURI>

04 <Graph>http://dbpedia.org</Graph>

05 <DoCache>1</DoCache>

06 <PageSize>10000</PageSize>

07 </DataSource>

08 <DataSource id="geonames">

09 <EndpointURI>http://localhost:8890/sparql</EndpointURI>

10 </DataSource>

11 <Interlink id="cities">

12 <LinkType>owl:sameAs</LinkType>

13 <SourceDataset dataSource="dbpedia" var="a">

14 <RestrictTo>{ ?a rdf:type dbpedia:City } UNION { ?a rdf:type dbpedia:PopulatedPlace }</RestrictTo>

15 </SourceDataset>

16 <TargetDataset dataSource="geonames" var="b">

17 <RestrictTo>?b gn:featureClass gn:P</RestrictTo>

18 </TargetDataset>

19 <LinkCondition>

20 <AVG>

21 <MAX>

22 <Compare metric="jaroSimilarity" optional="1">

23 <Param name="str1" path="?a/rdfs:label[@lang 'en']" />

24 <Param name="str2" path="?b/gn:alternateName[@lang 'en']" />

25 </Compare>

26 <Compare metric="jaroSimilarity" optional="1">

27 <Param name="str1" path="?a/rdfs:label" />

28 <Param name="str2" path="?b/gn:name" />

29 </Compare>

30 </MAX>

31 <Compare metric="maxSimilarityInSets" optional="1" weight="3">

32 <Param name="set1" path="?a/foaf:page" />

33 <Param name="set2" path="?b/gn:wikipediaArticle" />

34 <Param name="submetric" value="stringEquality" />

35 </Compare>

36 <MAX>

37 <Match metric="numSimilarity" optional="1">

38 <Param name="num1" path="?a/p:populationEstimate" />

39 <Param name="num2" path="?b/gn:population" />

40 </Match>

41 <Match metric="numSimilarity" optional="1">

42 <Param name="num1" path="?a/dbpedia:populationTotal" />

43 <Param name="num2" path="?b/gn:population" />

44 </Match>

45 </MAX>

46 <Compare metric="numSimilarity" optional="1" weight="0.7">

47 <Param name="num1" path="?a/wgs84_pos:lat" />

48 <Param name="num2" path="?b/wgs84_pos:lat" />

49 </Compare>

50 <Compare metric="numSimilarity" optional="1" weight="0.7">

51 <Param name="num1" path="?a/wgs84_pos:long" />

52 <Param name="num2" path="?b/wgs84_pos:long" />

53 </Compare>

54 </AVG>

55 </LinkCondition>

56 <Thresholds accept="0.9" verify="0.7" />

57 <Limit max="1" method="metric_value" />

58 <Output acceptedLinks="accepted_links.n3" verifyLinks="verify_links.n3" mode="truncate" />

59 </Interlink>

60 </Silk>

Figure 1. Example: Interlinking cities in DBpedia and GeoNames

Specify SPARQL endpoints

Specify link type

Specify source dataset

Specify target dataset

Compare city names
using Jaro similarity

Compare populations

Compare geocoordinates

Compare links to Wikipedia

Speficy thresholds, link limits and output format

Weight results

Use paths to address RDF nodes

Aggregate
results

2.1 Data Access
For accessing the source and target datasources, we first configure
access parameters to the DBpedia and GeoNames SPARQL
endpoints using the <DataSource> directive. The only
mandatory datasource parameter is the endpoint URI. Besides
this, it is possible to define other datasource access options, such
as the graph name and to enable the caching of SPARQL query
results in memory. In order to restrict the query load on remote
SPARQL endpoints, it is possible to set a delay in between
subsequent queries using the <Pause> parameter, specifying the
delay time in milliseconds. For working against SPARQL
endpoints that restrict result sets to a certain size, Silk uses a
paging mechanism. The maximal result size is configured using
the <PageSize> parameter. The paging mechanism is
implemented via SPARQL LIMIT and OFFSET queries. Lines 2
to 7 within the example show how the access parameters for the
DBpedia datasource are set to select only resources from the
named graph http://dbpedia.org, enable caching and limit
the page size to 10,000 results per query.

The configured data sources are later referenced in the
<SourceDataset> and <TargetDataset> clauses of the
"cities" link specification. Since we only want to match cities, we
restrict the sets of examined resources to instances of the classes
dbpedia:City and dbpedia:PopulatedPlace and the
GeoNames feature class gn:P by supplying SPARQL conditions
within the <RestrictTo> directives in lines 14 and 17. These
statements may contain any valid SPARQL expressions that
would usually be found in the WHERE clause of a SPARQL query.

2.2 Link Conditions
The <LinkCondition> section is the heart of a Silk link
specification and defines how similarity metrics are combined in
order to calculate a total similarity value for an entity pair.

For comparing property values or sets of entities, Silk provides a
number of builtin similarity metrics. Table 1 gives an overview of
these metrics. The implemented metrics include string, numeric,
data, URI, and set comparison methods as well as a taxonomic
matcher that calculates the semantic distance between two
concepts within a concept hierarchy using the distance metric
proposed by Zhong et al. in [3]. Each metric in Silk evaluates to a
similarity value between 0 or 1, with higher values indicating a
greater similarity.

Table 1. Available similarity metrics in Silk

Metric Description

jaroSimilarity
String similarity based on Jaro

distance metric

jaroWinklerSimilarity
String similarity based on Jaro-

Winkler metric

qGramSimilarity String similarity based on q-grams

stringEquality
Returns 1 when strings are equal, 0

otherwise

numSimilarity Percentual numeric similarity

dateSimilarity Similarity between two date values

uriEquality
Returns 1 if two URIs are equal, 0

otherwise

taxonomicSimilarity
Metric based on the taxonomic

distance of two concepts

maxSimilarityInSet
Returns the highest encountered
similarity of comparing a single

item to all items in a set

setSimilarity Similarity between two sets of items

These similarity metrics may be combined using the following
aggregation functions:

 AVG – weighted average

 MAX – choose the highest value

 MIN – choose the lowest value

 EUCLID – Euclidian distance metric

 PRODUCT – weighted product

To take into account the varying importance of different
properties, the metrics grouped inside the AVG, EUCLID and
PRODUCT operators may be weighted individually, with higher-
weighted metrics having a greater influence on the aggregated
result.

In the <LinkCondition> section of the example (lines 19 to
55), we compute similarity values for the the labels, Wikipedia
links, population counts and geographic coordinates of cities
between datasets and calculate a weighted average of these values.
Most metrics are configured to be optional since the presence of
the respective RDF property values they refer to is not always
guaranteed. In cases where alternating properties refer to an
equivalent feature (such as dbpedia:populationEstimate
and dbpedia:populationTotal), we choose to perform
comparisons for both properties and select the best evaluation by
using the <MAX> aggregation operator. Weighting of results is
used within the metrics comparing the geographical coordinates
(lines 46 and 50), with the longitude and latitude similarity
weights lowered to 0.7 each.

After specifying the link condition, we finally specify within the
<Thresholds> clause that resource pairs with a similarity
score above 0.9 are to be interlinked, whereas pairs between 0.7
and 0.9 should be written to a separate output file and be reviewed
by an expert. The <Limit> clause is used to limit the number of
outgoing links from a particular entity within the source data set.
If several candidate links exist, only the highest evaluated one is
chosen and written to the output files as specified by the
<Output> directive. In this example, we permit only one
outgoing owl:sameAs link from each resource.

Discovered links are outputted either as simple RDF triples or in
reified form together with their creation date, confidence score
and the ID of the employed interlinking heuristic.

2.3 Silk Selector Language
Especially for discovering other semantic relationships than entity
equality, a flexible way for selecting sets of resources or literals in
the RDF graph around a particular resource is needed. For
instance, DBpedia and LinkedMDB both contain movies and
directors. For generating links between movies in DBpedia and
their directors in LinkedMDB, we might want to navigate to the
director of a movie in DBpedia and compare her properties with
directors in LinkedMDB. In the case of linking musical artists

between DBpedia and MusicBrainz4, an open music database, we
might want to compare properties of the albums of the musicians.

Silk addresses this requirement by using a simple RDF path
selector language for providing parameter values to similarity
metrics and transformation functions. A Silk selector language
path starts with a variable referring to an RDF resource and may
then use one of several operators to navigate the graph
surrounding this resource. To simply access a particular property
of a resource, the forward operator (/) may be used. For example,
the path "?artist/rdfs:label" would select the set of label
values associated with an artist referred to by the ?artist
variable.

Sometimes, however, we need to navigate backwards along a
property edge. For example, musical albums in DBpedia contain a
dbpedia:artist property pointing to the album's creator.
However, there exists no explicit reverse property like
dbpedia:albums for an artist resource. So if a path begins
with an artist and we need to select all of her albums, we may use
the backward operator (\) to navigate property edges in reverse.
Since navigating backwards along the property
dbpedia:artist would select all of the artist's works, this
may not only select albums, but also songs and single releases.
This is addressed by a filter operator ([]), which allows selected
resources to be restricted to match a certain predicate. In this
example, we could use the RDF path "?artist\
dbpedia:artist[rdf:type dbpedia:Album]" to select only
albums amongst the works of a musical artist in DBpedia. The
filter operator also supports comparisons of numeric types as
predicates. For example, to select songs of an artist with a runtime
greater than 200 seconds, the path "?artist\
dbpedia:artist[dbpedia:runtime > 200]" can be used.

2.4 Pre-Matching
To compare all pairs of entities of a source dataset S and a target
dataset T would result in an unsatisfactory runtime complexity of
O(|S|·|T|). Even after using SPARQL restrictions to select suitable
subsets of each dataset, the required time and network load to
perform all pair comparisons might prove to be impractical in
many cases. To avoid this problem, we need a way to quickly find
a limited set of target entities that are likely to match a given
source entity. Silk supports this by allowing rough index
prematching.

When using prematching, all target resources are indexed by one
or more specified property values (most commonly, their labels)
before any detailed comparisons are performed. During the
subsequent resource comparison phase, the previously generated
index is used to look up potential matches for a given source
resource. This lookup uses the BM255 weighting scheme for the
ranking of search results and additionally supports spelling
corrections of individual words of a query. Only a fixed amount of
target resources found in this lookup are considered as candidates
for a detailed comparison. An example of such a prematching
configuration that could be applied to our city linking example is
presented in Figure 2:

4 http://musicbrainz.org
5 http://xapian.org/docs/bm25.html

<PreMatchingDefinition
 sourcePath="?a/rdfs:label"
 hitLimit="10">
 <Index targetPath="?b/gn:name" />
 <Index targetPath="?b/gn:alternateName" />
</PreMatchingDefinition>

Figure 2. Pre-Matching

This statement instructs Silk to index the cities in the target
dataset by both their gn:name and gn:alternateName
property values. When performing comparisons, the
rdfs:label of a source resource is used as a search term into
the generated indexes and only the first ten target hits found in
each index are considered as link candidates for detailed
comparisons. If we neglect a slight index insertion and search
time dependency on the target dataset size, we now achieve a
runtime complexity of O(|S| + |T|), making it feasible to interlink
even large datasets under practical time constraints. Note however
that this prematching may come at the cost of missing some links
during discovery, since it is not guaranteed that a prematching
lookup will always find all matching target resources.

3. EXPERIMENTS
During the implementation of Silk, we experimented with linking
DBpedia to several other public Linked Data sources. Movies in
DBpedia were linked both to their movie counterparts and to their
directors in LinkedMDB6. Between GeoNames and DBpedia, we
created links between cities, as shown in Silk-LSL example
above. Finally, clinical drugs from DrugBank7 were linked with
their counterparts in DBpedia. The following section gives a short
overview over the employed similarity heuristics as well as the
amounts of discovered links.

For interlinking movies between DBpedia and LinkedMDB, we
used Jaro string similarity to match movie titles and director
names, date similarity for comparing release dates and numeric
similarity for runtimes. We used the Thresholds directive
<Thresholds accept="0.9" verify="0.7" /> to
define similarities of 0.9 as acceptable and similarities between
0.7 to 0.9 to be verified by an expert. The number of movies in the
datasets and amounts of discovered links are shown in Table 2.

Table 2. Linking movies between DBpedia and LinkedMDB

Number of movies in DBpedia 34,685

Number of movies in LinkedMDB 38,064

Links above accept threshold 26,059

Links above verify threshold 1,858

Interlinking DBpedia movies to their directors in LinkedMDB is
an example of creating links other than owl:sameAs links, for
which we simply used a Jaro string similarity metric to compare a
movie's director name to the label of a director in LinkedMDB.
Dataset statistics and linking results for this example are given in
Table 3.

6 http://www.linkedmdb.org/
7 http://www4.wiwiss.fu-berlin.de/drugbank/

Table 3. Linking DBpedia movies to directors in LinkedMDB

Number of movies in DBpedia 34,685

Number of directors in LinkedMDB 8,367

Links above accept threshold 1,693

Links above verify threshold 374

For linking cities in DBpedia and GeoNames, we used Jaro
similarity between city names, URI equality for links to
Wikipedia articles as well as numeric similarity for the population
counts and geographic coordinates. The results for this use case
are shown in Table 4.

Table 4. Linking cities between DBpedia and GeoNames

Number of cities in DBpedia 40,197

Number of populated places
in GeoNames

2,410,855

Links above accept threshold 35,031

Links above verify threshold 9,147

Finally, for generating links between clinical drugs in DrugBank
and DBpedia, we compared drug labels via the JaroWinkler
similarity, PubChem 8 identifiers via string equality and used
numeric similarity for comparing the drugs' molecular weights.
Table 5 shows the results for this case.

Table 5. Linking drugs between DBpedia and DrugBank

Number of drugs in DBpedia 3,134

Number of drugs in DrugBank 4,772

Links above accept threshold 1,202

Links above verify threshold 245

The metric compositions, weightings and thresholds in these
examples were chosen based on what seemed to produce
reasonably valid results in our tests. However, a detailed analysis
of the quality of the generated links has not yet been performed.
When using Silk in a practical scenario, it is advisable to evaluate
the accuracy and completeness of generated links more closely
while adjusting the linking specification accordingly.

4. SILK IMPLEMENTATION
Silk is written in Python and is run as a batch process on the
command line. The framework may be downloaded from Google
Code9 under the terms of the BSD license. For calculating string
similarities, a library from Febrl 10 , the Freely Extensible
Biomedical Record Linkage toolkit, is used, while Silk's

8 http://pubchem.ncbi.nlm.nih.gov
9 http://silk.googlecode.com
10 http://sourceforge.net/projects/febrl

prematching features are achieved with the search engine library
Xapian11. The Silk system architecture is illustrated in Figure 3:

Figure 3. Silk System Architecture

Before executing any comparisons, Silk retrieves the source and
target resource lists. The list of source resources is retrieved
directly through a resource lister which queries the respective
SPARQL endpoint and caches the list on disk for reuse in a later
run of Silk. Target resources are first indexed by means of a
resource indexer, making them searchable by specific properties
or RDF Path evaluations. During comparison processing, a list of
target resource candidates for each source resource is looked up in
this index, limiting detailed comparisons to index search hits. This
prematching of resources is optional, but recommended as it
drastically reduces run time and network load.

During each detailed resource pair comparison, the user-
specificed metric aggregation tree is evaluated. Function or metric
parameters passed as RDF Path values are transformed to
SPARQL queries by an RDF Path translator and sent to the
respective SPARQL endpoint for evaluation. Query results are
cached in memory during Silk runtime.

If a metric aggregation for a pair of resources results in a value
above the specified linking thresholds, a candidate link is saved in
memory. After completing all comparisons for a link
specification, a link limit may be applied to limit the maximum
number of outgoing links from a single resource. Only a specified
count of highest-rated links are kept, lower-valued links are
discarded. The remaining links are written to the output file in the
format specified by the user (Turtle, CSV, reified format together
with meta-information such as confidence score and creation
date).

5. RELATED WORK
There is a large body of related work on record linkage [5] and
duplicate detection [4] within the database community as well as
on ontology matching [6] in the knowledge representation
community. Silk builds on this work by implementing similarity
metrics and aggregation functions that proved successful within
other scenarios. What distinguishes Silk from this work is its
focus on the Linked Data scenario where different types of

11 http://xapian.org

semantic links should be discovered between Web data sources
that often mix terms from different vocabularies and where no
consistent RDFS or OWL schemata spanning the data sources
exist.

Related work that also focuses on Linked Data includes Raimond
et al. [7] who propose a link discovery algorithm that takes into
account both the similarities of web resources and of their
neighbors. The algorithm is implemented within the GNAT tool
and has been evaluated for interlinking music-related data sets. In
[8], Hassanzadeh et al. describe a framework for the discovery of
semantic links over relational data which also introduces a
declarative language for specifying link conditions. A main
difference between LinQL and Silk-LSL is the underlying data
model and Silk’s ability to more flexibly combine metrics through
aggregation functions. A framework that deals with instance
coreferencing as part of the larger process of fusing Web data is
the KnoFuss Architecture proposed in [9]. In contrast to Silk,
KnoFuss assumes that instance data is represented according to
consistent OWL ontologies.

6. CONCLUSIONS
We presented the Silk framework, a flexible tool for discovering
links between entities within different Web data sources. We
introduced the Silk-LSL link specification language and
demonstrated its applicability within different link discovery
scenarios.

The value of the Web of Data rises and falls with the amount and
the quality of links between data sources. We hope that Silk and
other similar tools will help to strengthen the linkage between data
sources and therefore contribute to the overall utility of the
network.

The complete Silk- LSL language specification and further Silk
usage examples are found on the Silk project website at
http://www4.wiwiss.fu-berlin.de/bizer/silk/.

7. REFERENCES
[1] Berners-Lee, T.: Linked Data - Design Issues.

http://www.w3.org/DesignIssues/LinkedData.html

[2] Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked
Data on the Web. http://www4.wiwiss.fu-
berlin.de/bizer/pub/LinkedDataTutorial/

[3] Zhong, J., et al.: Conceptual Graph Matching for Semantic
Search. The 2002 International Conference on
Computational Science (ICCS2002), Amsterdam, April
2002.

[4] Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate
record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering 19(1), 1–16 (2007).

[5] Winkler, W.: Overview of Record Linkage and Current
Research Directions. Bureau of the Census, Technical
Report, 2006.

[6] Euzenat, J., Shvaiko, P.: Ontology Matching. Springer,
Heidelberg, 2007.

[7] Raimond, Y., Sutton, C., Sandler, M.: Automatic Interlinking
of Music Datasets on the Semantic Web. In: Linked Data on
the Web Workshop (LDOW2008), 2008.

[8] Hassanzadeh, O., et al.: A Declarative Framework for
Semantic Link Discovery over Relational Data. Poster at
18th World Wide Web Conference (WWW2009), 2009.

[9] Nikolov, A., et al.: Integration of Semantically Annotated
Data by the KnoFuss Architecture. In: 16th International
Conference on Knowledge Engineering and Knowledge
Management, 265-274, 2008.

