
Explorator: a tool for exploring RDF data through direct
manipulation.

Samur F. C. de Araújo
Catholic University of Rio de Janeiro

R. M. S. Vicente 225
Gávea, Rio de Janeiro, RJ, Brazil

+55 21 3527-1500

saraujo@inf.puc-rio.br

 Daniel Schwabe
Catholic University of Rio de Janeiro

R. M. S. Vicente 225
Gávea, Rio de Janeiro, RJ, Brazil

+55 21 8241-4313

dschwabe@inf.puc-rio.br

ABSTRACT

In this paper we introduce Explorator, a tool for exploring the
Semantic Web data by direct manipulation. Explorator
implements a model of operations that is supported by a visual
interface that enables the user, with minimal knowledge of RDF
model, to explore an RDF database without a-priori knowledge of
data domain. Consequently, it is well suited for tasks that involve
information search, exploration and visualization.

Categories and Subject Descriptors
H.5.3 Web-based interaction; H.5.4 Hypertext/Hypermedia -
Navigation, H.3.3 Information Search and Retrieval – search
process, query formulation.

General Terms
Algorithms, Design, Experimentation, Human Factors,
Languages, Theory, Verification.

Keywords
RDF, exploratory search, exploration, ontology, semantic web.

1. INTRODUCTION
As the volume of information on the Web increases considerably,
we need better tools to help us discover and make sense of the
available information, as well as to seek answers to specific
questions we may have.

Currently, seeking information is a task that permeates most
activities we develop in our day-to-day. Depending on the type of
activity we perform, we use different strategies and tactics to
search for information. In the web, these tactics are supported by
computational tools such as keyword search, navigation and
browsing [11]. But the process of seeking information is not
simply finding it, we must keep in mind that the task of the user
ranges from simply searching for a known item to activities such
as knowledge acquisition, understanding of concepts, discovery,
planning, transforming, etc. [11]

A more recent development has been the Semantic Web (SW),
and the rapidly growing amount of semantically annotated data
leads to the need to support not only for searching, but also for

investigating and learning about a set of data without a-priori
knowledge of its domain. This data is expressed in RDF1, and is
typically stored in very large interconnected databases, without a
homogeneous schema. The exploration mechanisms currently
available are not sufficient to accomplish the user tasks in the SW.
Keyword search, e.g. Sindice2, only addresses simple information
lookup. Explicitly formulated queries, e.g. iSparql 3 , requires
schema and technical knowledge from the users. Semantic
browsers, e.g. Tabulator [3], are not designed to explore huge
datasets and semantic faceted browsing, e.g. BrowseRDF [12], is
inefficient for fact-finding or known-item retrieval and some more
complex exploratory tasks.

In this paper we will describe a model for representing
information processing by users in exploratory tasks, and
Explorator tool, which provides a browser interface supporting
this model. Explorator is based on the metaphor of direct
manipulation of information on the interface, with immediate
feedback of user actions. The remainder of the paper is organized
as follows. Section 2 defines more precisely the exploratory
search itself; Section 3 presents the information processing model;
describes Explorator tool and its interface; Section 4 we present
some details of its implementation; Section 5 presents some
conclusions and directions for further work.

2. EXPLORATORY SEARCH
In the hypertext field, we call information exploration the process
of seeking, learning about and investigating a (potentially large)
collection of information items through search, browsing or
navigation, but not excluding other forms, in order to discover
something new.

Research in the area called exploratory search [11] has tried to
develop solutions that support information exploration.
Exploratory search is applicable in situations where the user’ task
and the search environment have complex elements that require
constant user interpretation during the exploration process. For
example, how to support the user’s search task when she is not
familiar with the search domain, or she does not have sufficient
knowledge about the domain to make a query; how to support the
navigation in vast information spaces, or when the navigation,
searching and browsing are not enough. In other words, how to

1 RDF – Resource Description Framework
2 http://sindice.com
3 iSparql can be accessed at http://demo.openlinksw.com/isparql/

Copyright is held by the author/owner(s).
LDOW 2009, April 20-24, 2009, Madrid, Spain.

take into account all aspects [2, 7, 11] that influence the
exploration process: the user’s task, the user’s context, the user’s
profile, the environment, the information provenance, etc.

Marchionini [11] made a distinction between exploratory search,
lookup and search retrieval. According to him, exploratory search
is based not only on lookup but also on investigation and learning.
He argues that investigative search and learning search require
more human iteration than a simple lookup, because these are
exploratory processes that support tasks that require the cognitive
and interpretative ability of user. These kinds of tasks are
commonly found in the exploration of RDF databases, where the
users need to identify classes and properties from the schema, in
order to understand concepts, acquire knowledge and learn about
the domain.

Berners-Lee et al. [3] argue that once the information sought is
found, it may be necessary to analyze it. According to their
description, exploration and analysis are distinct processes that are
inter-related during the user’s task. In our point of view, the
process of exploration involves both finding a piece of
information and investigating or learning about its domain,
because it is guided by the need to perform a task. The cognitive
process of analysis permeates the entire exploratory task, since
while browsing, the user creates an expectation of what she will
obtain, she sees what has been achieved and uses this information
to guide her in the next step.

In order to provide to the user an exploratory search tool that
supports learning and investigative search on SW, we focused on
three fronts:

• Information search (how semantic data is found on the
Semantic Web),

• Information usage (how semantic data is used on the
Semantic Web),

• Information visualization (how semantic data is
presented on the Semantic Web).

2.1 Information Search (in the SW)
Nowadays, we can access the SW data in three different manners:
through a SPARQL Endpoint4, through an URI, or by processing
semantically annotated HTML pages (e.g. Microformats 5 or
RDFa6). There are tools which can explore the SW directly, such
as semantic web browsers, such as Tabulator [3], Disco7, Zitgist
data viewer 8 , Marbles 9 , ObjectViewer 10 and Openlink RDF
Browser11.

These tools all implement a similar exploration strategy, allowing
the user to visualize an RDF sub-graph in a tabular fashion or in a
more “visual” way (e.g., map views or timelines) when
applicable. The sub-graph is obtained by dereferencing [4, 6] an
URI and each tool uses a distinct approach for this. Tabulator is

4 http://www.w3.org/TR/rdf-sparql-protocol/
5 http://microformats.org/
6 http://www.w3.org/TR/xhtml-rdfa-primer/
7 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
8 http://dataviewer.zitgist.com/
9 http://beckr.org/marbles
10 http://objectviewer.semwebcentral.org/
11 http://demo.openlinksw.com/rdfbrowser/index.html

able to extract semantic annotations from HTML pages obtained
from URIs that cannot be dereferenced as an RDF file, using
GRDLL. In spite of distinct dereferencing processes being able to
retrieve different amounts of information, the process itself does
not improve the nature of tasks performed in these tools. In fact,
the set of exploration tasks are limited to navigation between sub-
graphs by clicking on the resources displayed in the interface and
dereferencing the corresponding URIs.

Another way to access SW data is by querying a SPARQL
Endpoint that receives a SPARQL12 query and returns a set of
RDF resources described in XML notation. There are a few tools
that allow us to explore a SPARQL Endpoint. NITELIGHT [15]
and iSPARQL13 are Visual Query Systems (VQS) [5] which allow
visual construction of SPARQL queries, differing mainly in the
visual notation employed. It is understood that to use these tools
the user must have a full comprehension of the underlying RDF
schema and the query language syntax, therefore leading to a high
cognitive load for newcomers and less experienced users.
Tabulator also provides a way to query its data using SPARQL by
providing an interface in which the user can formulate a query
based on the selection of the elements of the RDF graph displayed
on the interface. However, more complex queries need to be
edited manually, exposing the user to some of the issues cited
before.

Some tools address a different goal in the process of accessing
SW data. Instead of focusing on access to RDF data, they focus on
how to consume RDF data. Exhibit [9] is a lightweight structured
data publishing tool that can be used to export small collection of
RDF data. This tool accomplishes an important role on the SW,
by publishing content from different sources on the Web.

Taking all this into consideration, we can see there are no tools
adequate to explore the semantic web as a whole. Currently, the
browsers and SPARQL query builders are addressing different
goals, and were designed for different kinds of users. In order to
provide a complete and integrated exploratory search mechanism
to access the SW data, we are proposing Explorator.

2.2 Information Usage (in the SW)
The RDF model provides a format for data, information, and
knowledge exchange. However, the repositories of data are
scattered on the SW, which demand a unified mechanism to
access them. Many information-intensive human tasks demand the
manipulation of multiple pieces of information. In a SW
exploration tool, at a low level, the objects manipulated are RDF
data (resources, triples, literals, properties, etc) and queries. These
are the information items being manipulated when using an RDF
browser.
Consider the SW user looking for all papers mentioning another
paper; or all paper authors’ phone numbers. The user may
encounter different data architectures while performing such
tasks. For example, the information sought may be stored in
multiple RDF files or in a single large RDF repository, and
expressed in distinct vocabularies. It is crucial that any
exploratory tool be able to consolidate the information to be
accessed in an integrated way. The user should be able to merge
information described in different vocabularies, at least by
directly manipulating each piece of information. For example,

12 http://www.w3.org/TR/rdf-sparql-query/
13 iSparql can be accessed at http://demo.openlinksw.com/isparql/

suppose she is looking for all email addresses by dereferencing
four different URIs, each one returning triples expressed in a
distinct vocabulary. Even if she could see all the data together, she
would not be able to manipulate this set of information to obtain a
unique final set of email addresses, only by using current RDF
browsers’ functionality.
Some of these browsers, like Openlink RDF Browser, cache all
RDF data during the user’s navigation. Therefore, the user can
treat pieces of information from different sources as coming from
a unique repository. However, the user cannot issue a query on the
results, which limits the kinds of tasks supported. For example, it
is very difficult to obtain the homepage address for all people
known to someone, as reported in their FOAF profile, by using
one of the RDF Browsers mentioned earlier.

From the user’s task point of view, exploring the SW involves
asking questions and getting answers about the schema and
instances. Obviously, understanding what is presented, what and
how it can be manipulated is essential for the user to be able to
formulate her question. Thus, querying is an important way for the
user to increase her knowledge about the schema and data
contained in an RDF repository. Direct SPARQL query
formulation, which is allowed in some browsers, still imposes a
higher mental load from the user, even for the more advanced. In
addition, the user often does not have enough knowledge about
the domain to formulate a query. As seen in Cartaci et al. [5], the
raw use of query languages induces the user to make mistakes
during writing, considerably increasing the time for query
formulation and usually being far from the mental model that the
user has of the reality.

Ding at al. [7] argue that the object of interest is not only the
domain schema and instances, but also the source of data, which
is an import piece of information in the exploratory process. In
fact, when we are exploring several repositories, we could want to
know from where each piece of information comes from. Marbles
and Disco are examples of RDF browsers that track the
provenance of the information, helping the user in judging its
credibility.

In summary, current tools allow the user to manipulate raw RDF
data and do not provide a user friendly way to ask question. The
user is limited to visualizing the result as aggregate data. Any
processing is done manually, and the user has a limited way to
rearrange, group or filter the data, and process it further. We will
discuss later how Explorator can be a step forward in SW data
manipulation.

2.3 Information Visualization (in the SW)
A SW browser navigates along relationships between concepts. At
each step of navigation, in this unknown and semi-structured (in
the sense of schema-less) space, a set of RDF triples is displayed
in the interface.
Browsers such as Disco, Marbles, Zitgist data viewer, Openlink
RDF Viewer, represent RDF data in a tabular fashion. In Disco’s
interface, each triple is a line in a two columns table, the
navigation is done by clicking on the resources displayed in the
interface. Marbles does the same, and groups the values of
properties that occur more than once for the same resource. In
addition to the tabular presentation, the user has a more refined
view of the triples being displayed. As in Disco, for each
navigation step, the whole content is replaced by a new set of
triples retrieved from the dereferenced URI.

Tabulator’s more general view represents the information in a tree
structure. As the user selects a resource in the interface, a new
node is added to the tree, thus recording user’s navigation process
in the interface. The authors argue that it is comfortable for the
user to see the information in a tree-oriented interface, due to
familiarity with other sources of data are also represented in a
hierarchical structure. The authors also proposed a model of views
to be applied when the domain is known. A view oriented towards
a specific domain improves the understanding of the instances
being explored. For example, it is better to see geographic
coordinates on a map than in a table.

From the user's task point of view, the representation of
information helps its assimilation, but it does not expand the kinds
of tasks that can be done. What we have observed so far is that
without a proper model of exploration, involving well-defined
operations, the user’s exploration resumes to navigating between
the nodes of an RDF graph, sequentially.

3. EXPLORATOR
Explorator 14is an open-source exploratory search tool for RDF
graphs, implemented in a direct manipulation interface metaphor.
It implements a custom model of operations, and also provides a
Query-by-example [18] interface. Additionally, it provides faceted
navigation over any set obtained during the operations in the
model that are exposed in the interface. It can be used to explore
both a SPARQL endpoint as well as an RDF graph in the same
way as “traditional” RDF browsers. Its general architecture is
represented in the diagram below:

Figure 1. Explorator’s general architecture.

At the most elementary level, the user’s task resumes to
dereferencing an URI or formulating and executing a SPARQL
query against a SPARQL Endpoint. In Explorator, every
SPARQL Endpoint is a repository, that can be enabled or disabled
and can be manipulated individually or integrated into a single
global source of RDF data. The dereferenced URIs are stored in a
local SESAME 15 repository which can then be queried and
manipulated as if it were a SPARQL Endpoint. In other words, the
user always explores a federation of databases, containing
SPARQL Endpoints and RDF triples obtained by dereferencing
specific URIs.

14 Explorator information, including a demo interface and the

URL of the subversion repository can be accessed at
http://.www.tecweb.inf.puc-rio.br/explorator

15 http://www.openrdf.org/

SEMANTIC WEB DATA

REPOSITORIES

EXPLORATOR MODEL

EXPLORATOR INTERFACE

The set of manipulation operations is limited to the operations
defined in our processing information model which we will
describe next.

3.1 The Information Processing Model
Exploring a set of information items in the SW is understood here
as a process of transforming resources and triple by successive
application of operations.

Our experience in Web application design methods [10, 16] has
shown us that it useful to characterize the user information
processing as set of manipulation operations, in what has been
called “set based navigation” [14]. This view is also supported by
more recent proposal such as Parallax16. Basically, the user is
always processing (browsing) information items within a set of
interest; if necessary, this set is further manipulated to either
remove uninteresting elements or to add additional elements of
interest.
Explorator’s model is composed of two elements: the manipulated
items and the manipulation operations. The items are primitive
elements in the RDF model: triple, resources, literals, URIs, etc.
The operations are grouped in two sets: set operations and search
operations.

We will show in the following sub-sections that this model can
encompass classical browsing, set-based navigation as found in
SHDM [10], and faceted browsing, as well as keyword search.

3.1.1 Sets
The model manipulates two kinds of sets – sets of RDF triples and
sets of RDF resources. When dealing with sets of RDF resources,
the usual set operations, union, intersection and difference are
available. Since RDF resources are treated as URIs, blank nodes
will only be included if they are assigned URIs, as occurs in some
data stores.

When operating on sets of triples, we interpret the set operations
as applying to any of the triple components, namely, subjects (S),
predicates (P) or objects (O). This is equivalent to projecting a set
of triples along one of its three slots.

3.1.2 Search Operation
As previously stated, there are two ways to access the data in SW:
dereferencing an URI or querying a SPARQL Endpoint. We
define in our model general query operation, called SPO (S, P, O),
to be applied to a SPARQL Endpoint. This operation allows the
user to obtain a new set of interest, which can then be processed in
the next step in the task.

The SPO operation has three parameters, all of which are sets: a
set of subjects, predicates, and objects. This operation is a subset
of general SPARQL queries, allowing the user to query an RDF
database by providing an example pattern of the desired set of
triples.

For example, the function SPO(∅,∅,∅) can be translated into
the following SPARQL query:
SELECT ?s ?p ?o WHERE {?s ?p ?o} .

For the following data:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

16 http://mqlx.com/~david/parallax/index.html

_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .
_:b foaf:mbox <mailto:peter@example.org> .
_:c foaf:mbox <mailto:carol@example.org> .

The query above should return all triples. On the other hand, the
function SPO(∅,{foaf:mbox}, ∅) can be translated to:

SELECT ?s ?p ?o WHERE { ?s ? p ?o. Filter (p =
foaf:mbox)} .

This query returns all triples that have the property foaf:mbox.

Consider the more complex example of how this model could be
used, to solve the task: “find all Russian lakes”:
Let S be a function that returns all subjects from a set of triples.
SPO(
 S(SPO(∅,{rdf:type},{mondial:Lake})),

 {mondial:locatedIn},
 {mondial:Russia}
)
The expression above returns all triples that have the property
mondial:locateIn with value mondial:Russia.

It should be noted that, whereas these examples show single
valued parameters, in general the parameters for SPO are sets.

3.1.3 Set Operations
The model allows the user to manipulate items of information
within the RDF domain. Once the user has obtained a set of triples
and resources, she can manipulate them individually, formulate
new queries, or create new sets. To do so, the model supports the
following set operations:
Let A be the set of all triples.
Union:

Given two sets M and N, each containing a triple, the union
between M and N is the union of triples of M and N.
Intersection:

The intersection set I between M and N is the union of the triples
in A such that the subject of the triples in I appear in triples in
both M and N.
Difference:
The difference set D between M and N contains the triples in A
such that their subjects appear in triples in M and do not appear in
triples in N .

Note that, in this model, the result is always a set of triples, and
the operations are always computed on the sets of subjects,
predicates or objects of these triples.

3.2 Visualizing RDF data with Explorator
In existing RDF browsers, the data are expressed in one of the
following metaphors: table, tree or graph. In our approach, the
interface represents the elements of the underlying exploration
model: resources, triples and sets.

Figure 2. A set of triples displayed in Explorator. The subject
is “Niger”, the properties and values are listed under it.

Considering a generic exploration mechanism over the RDF
model, the concept of triple, entity and resource are mixed. In
Explorator’s interface. The predicates and objects of the triples are
nested and right aligned under the subject, thus evidencing the
entity represented by the subject of the triple, as shown in the
figure 2.

Explorator uses the following heuristic to render a resource (or
URI) in the interface:

• If the resource has a label, name or title property, it
renders its value.

• Otherwise the URI localname is rendered.

In this interface, each element can be manipulated individually.
Sets of subjects, predicates and objects can be selected by the user
and provided as parameters in the operations described in the
model. Dereferencing an URI, or the result of an operation over
the model always results in a new set in the interface. In this
sense, Explorator incorporates elements of the Direct
Manipulation paradigm [17], since the output of an operation may
be used as input of another, as they are expressed in the same
notation. Direct Manipulation is a user-system interaction
paradigm that allows users to point at visual representations of
objects and actions to carry out tasks rapidly and observe the
results immediately. Explorator’s interface follows this paradigm.

The interface has two main elements, the toolbar and the result
sets. The toolbar has a menu giving access to repository
configuration and additional functionalities; a search box; and a
group of buttons representing the operations of the model.

Figure 3. Explorator toolbar.

The operations menu is divided in two groups, as shown in Figure
4. The first area (Fig. 4 - 1) has the set operations: To operate, the
user must select the first set among the sets displayed, then click
on the operation (union, intersection or difference), then select
(click on) another set, and then click on ‘=’. Specifically for
union, the user can also click on multiple resources in the

interface (ctrl-click) and then click on the union operation to form
the corresponding set.

The second subdivision, marked as 2, includes the operands for
the SPO operation. In this case, the user must select one set, and
then click on one of S, P or O. She may also assign another set to
one of the other operands (S, P, O). Clicking on “=” produces the
result. Clicking on “clear” resets the operands previously selected.

Figure 4. Operations in Explorator toolbar.

The sets are represented as boxes, and stand for both sets of triples
or sets of resources. Strictly speaking, all boxes represent sets of
triples which can be grouped by subject, property or object.
Classes are shown in blue, and RDF properties are shown in
green.

Figure 5. Sets of triples represented in Explorator’s interface.
On the left we have all triples with Budapest as subject. On

the right we have some triples grouped by subject.

To select a triple the user simply clicks on the surrounding box,
whose border becomes dashed to indicate the selection. If the user
double-clicks on a triple, it is interpreted as a request for all triples
with the same subject as the subject of the clicked triple.

3.3 Faceted Navigation
In addition to the operations already described, we have also
defined a model for specifying tailor made facets. This model can
be specified using a custom made vocabulary called FACETO,
which we do not elaborate here for reasons of space.

While many tools implement faceted navigation (FacetMap17,
Longwell18, BrowseRDF19, Flamenco20, Exhibit21, /facet22[8]),
none allow the specification of facets using RDF.

17 http://www.facetmap.com/
18 http://simile.mit.edu/wiki/Longwell
19 http://browserdf.org/

1 2

Figure 6: Explorator’s faceted interface.

Using FACETO, the designer may.
1. Specify a facet based on a given RDF property;

2. Specify a facet based on computed values. For example,
she may define a “dimension” facet based on the
combination of values of the “width” and “height”
properties.

3. Define synonyms among different resources that
represent the same information.

4. Define a facet as an arbitrary enumeration of values, or
as a range. For example, “inexpensive” and
“expensive”.

5. Specify a facet based on a hierarchical relation, such as
“located in”.

Note also, none of the existing tools can be applied directly to an
arbitrary SPARQL Endpoint. Using Explorator, the user can facet
any set of triples retrieved during her navigation.
As an added convenience, we have also implemented an
algorithm, based on entropy measures, that given a set of triples,
determines the set of properties that is most discriminant for that
set, and builds a set of facets based on these properties. Again,
due to space limitations, we do not detail this algorithm here. This
operator can be activated by clicking on the F* button in the
interface of any set.

Due SPARQL language limitations (missing of aggregation
functions), applying this operation over a SPARQL endpoint may
be very time consuming.

3.4 An Example
Let us now illustrate the usage of Explorator. Suppose the user
needs to find all the lakes contained exclusively in Russia. There

20 http://flamenco.berkeley.edu/
21 http://simile.mit.edu/exhibit/
22 http://slashfacet.semanticweb.org/

are several possible ways to achieve this task; one possible way
would be as follows:

1. Find all the lakes in the database;
2. Find Russia, the country;
3. Find all the lakes in Russia obtaining a set we will call

LR;
4. Find the countries that share a boundary with Russia

(Russia’s neighbors);
5. Find all the lakes in Russia’s neighbors, obtaining a set

we will call LN; and

6. Build the set of the lakes contained exclusively in
Russia by calculating the difference between the
previous sets: LR-LN

To find all the lakes in the database, the user first searches for
“lake”:

She locates the Lake class (in blue) in the resulting set, and gets
the set of instances of the Lake class by clicking on it, to obtain all
the lakes in the database:

Next, to find Russia, she searches for “Russia” and locates the
resource Russia in the resulting set:

To make sure she has the right resource, she views the resource
details:

Next, to find all lakes LR in Russia, she selects the set of all lakes
and sets it as the subject of her query by clicking on the [S]
toolbar button:

Continuing to build the query, she selects the resource Russia and
sets it as the object of her query:

She executes the query to obtain the set of all lakes in Russia:

Next, to find the countries that share a boundary with Russia, she
views the details of the Russia resource and locates the “neighbor”
property for Russia, thereby finding its neighboring countries:

To find all the Russian lakes that are also in Russia’s neighbors,
she selects the set of Lakes in Russia and sets it as the subject of
her next query:

She selects the set of Russia’s neighbors and sets it as the object
of her query:

She then executes the query to find all lakes in Russia’s
neighboring countries:

Finally, to build the set of the lakes contained exclusively in
Russia, she needs to calculate the difference between the set of
lakes in Russia and the set of lakes in Russia’s neighbors. To do
this, she selects the first set and the difference operator:

Finally, she selects the second set (containing the lakes in
Russia’s neighbors) and executes the difference operation by
clicking on the equal sign [=] toolbar button, thereby obtaining the
desired result:

4. IMPLEMENTATION
In the following we outline our implementation architecture and
some notable details. We decided to use a two layer architecture
which separates the upper presentation layer from the lower
model layer.

4.1 Presentation Layer
For the implementation of the proposed interface we adopted the
approach of adding semantic annotations in the HTML code to
define interface widgets behavior. To that end, we used the
Prototype23 library, which allows us to easily navigate the DOM
tree, select elements by their class attribute values - using CSS -
and link operations to interface events such as onclick,
onmouseover, onkeyup, etc.. This technique enables us to create
very dynamic interfaces for direct manipulation with continuous
representation, incremental actions and feedback. Also, all users
requests to the server are made using Ajax24, allowing users to
continue to explore data while their request are being processed.

4.2 Model Layer

The model layer can be summed up in the picture
below:

Figure 7. Explorator model architecture

We used the ActiveRDF [13] framework as a layer for translating
the Explorator model to the RDF model. Basically, we used the
ActiveRDF to generate SPARQL queries from our model. The set
operations are performed on Ruby objects because the ActiveRDF
and SPARQL do not support those operations natively. The query
and cache mechanism of ActiveRDF were modified to better
support integration with Explorator’s model.

The default dereferencing mechanism implemented is quite
simple: it simply retrieves and loads all triples retrieved from the
URI into a SESAME repository. No inference or recursive
dereferencing heuristic is applied. As a result of this approach, the
user can explore the triples retrieved along the direct URI
navigation as a SPARQL Endpoint.

5. CONCLUSION
Exploratory search is a data exploration technique that supports
complex user’s tasks involving lookup as well as learning and
investigation. We have shown how this technique can be
employed for arbitrary RDF databases. We have developed an
information-processing model that supports the tasks in the
Semantic Web that not only consist of a searching for a known
item, but also consists of acquisition and assimilation of
knowledge and concepts in an RDF database. This model has
been implemented in a tool called Explorator. We use the direct
manipulation metaphor in the construction of the interface, which

23 http://www.prototypejs.org/
24 http://ajaxpatterns.org/

was very effective in formulation of complex queries over an
unknown domain.

Explorator also allows faceted navigation, and we developed an
RDF vocabulary for faceted specification and an algorithm for
automatic extraction of all facets of a set of triples.

We have conducted a preliminary study [1] that has shown
encouraging results. Users with only basic knowledge of RDF
were able to elaborate nontrivial queries with Explorator. We
realized that Explorator’s performance (query execution time) had
a negative impact on the user experience, especially when
accessing remote endpoints. It may be the case that users explored
less because of the time it took to compute the queries. In fact, the
time consumption is demanded by the SPARQL datastores, which
are still in early stages, especially when compared to relational
DBMSs. This issue is of the utmost importance and is being
addressed for future versions.

Not surprisingly, the experiments showed us that Explorator is
better suited to advanced users who have solid knowledge about
RDF. Nevertheless, the experiments were brief, so we cannot yet
draw any conclusions about Explorator’s learning curve.
Preliminary evidence indicates that once the initial difficulty is
overcome, users can become quite proficient with the system.
The next step in our study will be to investigate the use of
Explorator as an epistemic tool, for users to understand more
about the represented data domain, as opposed to performing
predefined tasks and answering specific questions. In particular,
an open hypothesis is the adequacy of the RDF model to match
the user’s mental models – some of the collected evidence
suggests that it might be too low level, which means suitable
abstractions might have to be introduced. Exposing Explorator’s
operation model to naïve users is still a challenge which is the
subject of ongoing research.

Additional larger-scale experiments should be conducted to
compare different user interface alternatives and interaction
paradigms to better support both novice and expert users in
exploring the semantic web. To do so, Explorator can be
instrumented to remotely capture the users’ actions at the user
interface and on the underlying processing model.

As future work, we will extend the model to support the definition
of parameterized sets, i.e., sets derived from parameterized
operations. Following the QBE paradigm, the user will be able to
select any set in the interface, and indicate which should be the
parameters. Once this has been done, the user can then plug the
output of a box as the input of another box (set), thus establishing
a graph of inter-related operations, much like a spreadsheet. Such
parameterized sets can be saved to libraries, to be later reused by
any user.
Explorator needs some improvements related to the dereferencing
heuristics. Also, we are working on some mechanisms to enable
exporting RDF, and for enabling alternative views to allow the
user to visualize the resources and triples in table, timetables and
maps, as well as in customized domain-dependent formats.
In summary, Explorator’s contributions are:

• An information exploration model for RDF based on
facet and set navigation;

• An exploration environment that allows query
formulation by direct manipulation, allowing remote
and local SPARQL endpoints exploration;

• Automatic facet generation for given sets of RDF
triples;

RDF DATABASE

ACTIVERDF

EXPLORATOR MODEL

• A facet specification vocabulary and corresponding
implementation within the tool (not shown in this
paper).

Explorator is an open source project and can be accessed at
http://www.tecweb.inf.puc-rio.br/explorator.

ACKNOWLEDGMENT. Daniel Schwabe was partially
supported by a grant from CNPq.

6. REFERENCES

[1] Araújo F. C. S.; Schwabe D.; Barbosa D. J. S. Experimenting
with Explorator: a Direct Manipulation Generic RDF
Browser and Querying Tool. Visual Interfaces to the Social
and the Semantic Web. VISSW 2009. Sanibel Island, Florida
February 2009 (http://www.smart-
ui.org/events/vissw2009/index.html)

[2] Baldonado M. Q. W., Winograd T. SenseMaker: An
Information-Exploration Interface Supporting the Contextual
Evolution of a User’s Interests. 1996

[3] Berners-Lee T., Chen Y., Chilton L., Connolly D., Dhanaraj
R.,Hollenbach J, Lerer A., and Sheets D. Tabulator:
Exploring and Analyzing linked data on the Semantic Web.
Decentralized Information Group. Computer Science and
Artificial, Intelligence Laboratory. Massachusetts Institute of
Technology. Cambridge, MA, USA. 2006.

[4] Best Practice Recipes for Publishing RDF Vocabularies.
http://www.w3.org/TR/swbp-vocab-pub/

[5] Catarci, T., Costabile, M. F., Levialdi, S., Batini, C., 1997.
Visual Query Systems for Databases: A Survey. Journal of
Visual Languages and Computing, 8(2), 215-260, 1997.

[6] Dereferencing a URI to RDF.
http://esw.w3.org/topic/DereferenceURI

[7] Ding L., Zhou L., Finin T., Joshi A. How the Semantic Web
is Being Used: An Analysis of FOAF Documents.
Proceedings of the 38th Hawaii International Conference on
System Sciences – 2005

[8] Hildebrand M., Ossenbruggen J. v. and Hardman L. /facet: A
Browser for Heterogeneous Semantic Web Repositories. The
5th International Semantic Web Conference (ISWC). Athens,
GA, USA. 2005

[9] Huynh D. F., Karger D. R., Miller R. C.. Exhibit: lightweight
structured data publishing. International World Wide Web
Conference. Proceedings of the 16th international
conference on World Wide Web (WWW). Banff, Alberta,
Canada. 2007

[10] Lima, F.; Schwabe, D.: “Application Modeling for the
Semantic Web”, Proceedings of LA-Web 2003, Santiago,
Chile, Nov. 2003. IEEE Press, pp. 93-102, ISBN (available
at http://www.la-web.org).

[11] Marchionini G. Exploratory search: From finding to
understanding. Comm. Of the ACM, 49(4), 2006.

[12] OREN, E.; Delbru, R.; Decker, S. Extending faceted
navigation for RDF data. 5th International Semantic Web
Conference, Athens, GA, USA, LNCS 4273, p. 5-9. 2006

[13] Oren E.,Delbru R., Gerke S., Haller A., Decker S.
ActiveRDF: ObjectOriented Semantic Web Programming.
Digital Enterprise Research Institute National University of
Ireland, Galway Galway, Ireland. 2007

[14] ROSSI, G.; SCHWABE, D.; LYARDET, F.; "Patterns for
Designing Navigable Spaces", Proceedings of PLoP98 (Tech
Report TR #WUCS-98-25, Washington University, St.
Louis, MO, USA), Monticello, Illinois, USA, August 1998.

[15] Russell, A., Smart, P. R., Braines, D. and Shadbolt, N. R.
(2008). NITELIGHT: A Graphical Tool for Semantic Query
Construction. In: Semantic Web User Interaction Workshop
(SWUI 2008), 5th April, Florence, Italy. 2008.

[16] Schwabe, D., Rossi, G.: An object-oriented approach to web-
based application design. Theory and Practice of Object
Systems (TAPOS), Special Issue on the Internet, v. 4#4,
October, 1998, 207-225.

[17] Shneiderman, Ben, Direct manipulation: a step beyond
programming languages. IEEE Computer 16,8 (August
1983), 57-69.

[18] Zloof, M. M., 1977. Query-by-example: a database language.
IBM System Journal 16, 324-343, 1977.

