
Faceted Views over Large-Scale Linked Data

Orri Erling
OpenLink Software, Inc.
10 Burlington Mall Road

Suite 265
Burlington,MA 01803

U.S.A.

oerling@openlinksw.com

ABSTRACT
Faceted views over structured and semi structured data have
been popular in user interfaces for some years. Deploy-
ing such views of arbitrary linked data at arbitrary scale
has been hampered by lack of suitable back end technol-
ogy. Many ontologies are also quite large, with hundreds of
thousands of classes.

Also, the linked data community has been concerned with
the processing cost and potential for denial of service pre-
sented by public SPARQL end points.

This paper discusses how we use Virtuoso Cluster Edition
for providing interactive browsing over billions of triples,
combining full text search, structured querying and result
ranking. We discuss query planning, run time inferencing
and partial query evaluation. This functionality is exposed
through SPARQL, a specialized web service and a web user
interface.

Categories and Subject Descriptors
H.5.4 [Information Systems]: Hypertext/Hypermedia;
H.2.8 [Information Systems]: Database Applications

Keywords
Faceted Views, Linked Data, SPARQL, OpenLink Virtuoso,
partial query evaluation, entity ranking, large ontologies

1. INTRODUCTION
The transition of the web from a distributed document

repository into a universal, ubiquitous database requires a
new dimension of scalability for supporting rich user inter-
action. If the web is the database, then it also needs a query
and report writing tool to match. A faceted user interaction
paradigm has been found useful for aiding discovery and
query of variously structured data. Numerous implementa-
tions exist but they are chiefly client side and are limited in
the data volumes they can handle.

At the present time, linked data is well beyond prototypes
and proofs of concept. This means that what was done in
limited specialty domains before must now be done at real
world scale, in terms of both data volume and ontology size.
On the schema, or T box side, there exist many compre-
hensive general purpose ontologies such as Yago[1], Open
CYC[2], Umbel[3] and the DBpedia[4] ontology and many

Copyright is held by the author/owner(s).
LDOW2009, April 20, 2009, Madrid, Spain.
.

domain specific ones, such as [5]. For these to enter into
the user experience, the platform must be able to support
the user’s choice of terminology or terminologies as needed,
preferably without blow up of data and concomitant slow-
down.

Likewise, in the LOD world, many link sets have been
created for bridging between data sets.Whether such linkage
is relevant will depend on the use case. Therefore we provide
fine grained control over which owl:sameAs assertions will
be followed, if any.

Against this background, we discuss how we tackle incre-
mental interactive query composition on arbitrary data with
Virtuoso Cluster[6].

Using SPARQL or a web/web service interface, The user
can form combinations of text search and structured cri-
teria, including joins to an arbitrary depth. If queries are
precise and select a limited number of results, the results are
complete. If queries would select tens of millions of results,
partial results are shown.

The system being described is being actively devel-
oped as of this writing, early March of 2009 and is on-
line at lod.openlinksw.com. The data set is a combina-
tion of Dbpedia, Musicbrainz, Freebase, web crawls from
www.pingthesemanticweb.com, Uniprot, Neurocommons,
Bio2RDF.

The hardware consists of 2 8 core servers with 16G RAM
and 4 disks each. The system runs on Virtuoso 6 Cluster
Edition. All application code is written in SQL procedures
with limited client side Ajax, the Virtuoso platform itself is
in C.

The facets service allows the user to start with a text
search or a fixed URI and to refine the search by specifying
classes, property values etc., on the selected subjects or any
subjects referenced therefrom.

This process generates queries involving combinations of
text and structured criteria, often dealing with property
and class hierarchies and often involving aggregation over
millions of subjects, specially at the initial stages of query
composition. To make this work with in interactive time,
two things are needed:

1. a query optimizer that can almost infallibly produce
the right join order based on cardinalities of the specific
constants in the query

2. a query execution engine that can return partial results
after a timeout.

It is often the case, specially at the beginning of query
formulation, that the user only needs to know if there are
relatively many or few results that are of a given type or

involve a given property. Thus partially evaluating a query
is often useful for producing this information. This must
however be possible with an arbitrary query, simply citing
precomputed statistics is not enough.

It has for a long time been a given that any search-like
application ranks results by relevance. Whenever the facets
service shows a list of results, not an aggregation of result
types or properties, it is sorted on a composite of text match
score and link density.

The paper is divided into the following parts:

• SPARQL query optimization and execution adapted
for run time inference over large subclass structures.

• Resolving identity with inverse functional properties

• Ranking entities based on graph link density

• SPARQL partial query evaluation for displaying par-
tial results in fixed time

• a facets web service providing an XML interface for
submitting queries, so that the user interface is not
required to parse SPARQL

• a sample web interface for interacting with this

• sample queries and their evaluation times against com-
binations of large LOD data sets

2. PROCESSING LARGE HIERARCHIES
IN SPARQL

Virtuoso has for a long time had built-in superclass and
superproperty inference. This is enabled by specifying the
define input:inference "context" option, where context
is previously declared to be all subclass, subproperty, equiv-
alence, inverse functional property and same as relations
defined in a a given graph. The ontology file is loaded
into its own graph and this is then used to construct the
context. Multiple ontologies and their equivalences can be
loaded into a single graph which then makes another context
which holds the union of the ontology information from the
merged source ontologies.

Let us consider a sample query combining a full text
search and a restriction on the class of the desired matches:

define input:inference "yago"

prefix cy: <http://dbpedia.org/class/yago/>

select distinct ?s1 as ?c1,

(bif:search_excerpt (

bif:vector (’Shakespeare’), ?o1)) as ?c2

where {

?s1 ?s1textp ?o1 .

filter (bif:contains (?o1, ’"Shakespeare"’)) .

?s1 a cy:Performer110415638 .

} limit 20

This selects all Yago performers that have a property that
contains “Shakespeare” as a whole word.

The define input:inference "yago" clause means that
subclass, subproperty and inverse functions property state-
ments contained in the inference context called yago are con-
sidered when evaluating the query. The built-in function
bif:search excerpt makes a search engine style summary
of the found text, highlighting occurrences of Shakespeare.

The bif:contains function in the filter specifies the full text
search condition on ?o1.

This query is a typical example of queries that are exe-
cuted all the time when a user refines a search. We will now
look at how we can make an efficient execution plan for the
query. First, we must know the cardinalities of the search
conditions:

To see the count of subclasses of Yago performer, we can
do:

prefix cy: <http://dbpedia.org/class/yago/>

select count (*)

from <http://dbpedia.org/yago.owl>

where {

?s rdfs:subClassOf cy:Performer110415638

option (transitive, t_distinct) }

There are 4601 distinct subclasses, including indirect ones.
Next we look at how many Shakespeare mentions there

are:

select count (*) where {

?s ?p ?o .

filter (bif:contains (?o, ’Shakespeare’)) }

There are 10267 subjects with Shakespeare mentioned in
some literal.

define input:inference "yago"

prefix cy: <http://dbpedia.org/class/yago/>

select count (*) where {

?s1 a cy:Performer110415638 . }

There are 184885 individuals that belong to some subclass
of performer.

This is the data that the SPARQL compiler must know
in order to have a valid query plan. Since these values
will wildly vary depending on the specific constants in the
query, the actual database must be consulted as needed
while preparing the execution plan. This is regular query
processing technology but is now specially adapted for deep
subclass and subproperty structures.

Conditions in the queries are not evaluated twice, once
for the cardinality estimate and once for the actual run.
Instead, the cardinality estimate is a rapid sampling of the
index trees that reads at most one leaf page.

Consider a B tree index, which we descend from top to
the leftmost leaf containing a match of the condition. At
each level, we count how many children would match and
always select the leftmost one. When we reach a leaf, we see
how many entries are on the page. From these observations,
we extrapolate the total count of matches.

With this method, the guess for the count of performers
is 114213, which is acceptably close to the real number.

Given these numbers, we see that it makes sense to first
find the full text matches and then retrieve the actual classes
of each and see if this class is a subclass of performer. This
last check is done against a memory resident copy of the
Yago hierarchy, the same copy that was used for enumerat-
ing the subclasses of performer.

However, the query

define input:inference "yago"

prefix cy: <http://dbpedia.org/class/yago/>

select distinct ?s1 as ?c1,

(bif:search_excerpt (

bif:vector (’Shakespeare’), ?o1)) as ?c2

where {

?s1 ?s1textp ?o1 .

filter (bif:contains (?o1, ’"Shakespeare"’)) .

?s1 a cy:ShakespeareanActors .

}

will start with Shakespearean actors since this is a leaf
class with only 74 instances and then check if the properties
contain Shakespeare and return their search summaries.

In principle, this is common cost based optimization but
is here adapted to deep hierarchies combined with text pat-
terns. An unmodified SQL optimizer would have no possi-
bility of arriving at these results.

The implementation reads the graphs designated as hold-
ing ontologies when first needed and subsequently keeps a
memory based copy of the hierarchy on all servers. This
is used for quick iteration over sub/superclasses or proper-
ties as well as for checking if a given class or property is
a subclass/property of another. Triples with OWL pred-
icates equivalentClass, equivalentProperty and sameAs

are also cached in the same data structure if they occur in
the ontology graphs.

Also cardinality estimates for members of classes near the
root of the class hierarchy take some time since a sample of
each subclass is needed. These are cached for some minutes
in the inference context, so that repeated queries will not
redo the sampling.

3. INVERSE FUNCTIONAL PROPERTIES
AND SAME AS

Specially when navigating social data, as in FOAF[7] and
SIOC[8] spaces, there are many blank nodes that are iden-
tified by properties only. For this, we offer an option for
automatically joining to subjects which share an IFP value
with the subject being processed. For example, the query
for the friends of friends of Kjetil Kjernsmo returns empty:

select count (?f2) where {

?s a foaf:Person ; ?p ?o ; foaf:knows ?f1 .

?o bif:contains "’Kjetil Kjernsmo’" .

?f1 foaf:knows ?f2 };

But with the option

define input:inference "b3sifp"

select count (?f2) where {

?s a foaf:Person ; ?p ?o ; foaf:knows ?f1 .

?o bif:contains "’Kjetil Kjernsmo’" .

?f1 foaf:knows ?f2 };

we get 4022. We note that there are many duplicates
since the data is blank nodes only, with people easily rep-
resented 10 times. The context b3sifp simple declares that
foaf:name and foaf:mbox sha1sum should be treated as in-
verse functional properties (IFP). The name is not an IFP
in the actual sense but treating it as such for the purposes
of this one query makes sense, otherwise nothing would be
found.

This option is controlled by the choice of the inference
context, which is selectable in the interface discussed below.

The IFP inference can be thought of as a transparent ad-
dition of a subquery into the join sequence. The subquery
joins each subject to its synonyms given by sharing IFP’s.
This subquery has the special property that it has the initial
binding automatically in its result set. It could be expressed
as:

select ?f where {

?k foaf:name "Kjetil Kjernsmo" .

{ select ?org ?syn where {

?org ?p ?key .

?syn ?p ?key .

filter (bif:rdf_is_sub ("b3sifp", ?p,

<b3s:any_ifp>, 3) &&

?syn != ?org) }

} option (transitive,

t_in (?org), t_out (?syn), t_min (0), t_max (1))

filter (?org = ?k) .

?syn foaf:knows ?f . }

It is true that each subject shares IFP values with itself
but the transitive construct with 0 minimum and 1 max-
imum depth allows passing the initial binding of ?org di-
rectly to ?syn, thus getting first results more rapidly. The
rdf is sub function is an internal that simply tests whether
?p is a subproperty of b3s:any ifp.

Internally, the implementation has a special query oper-
ator for this and the internal form is more compact than
would result from the above but the above could be used to
the same effect.

The issues of run time vs precomputed identity inference
through IFP’s and owl:sameAs are discussed in much more
detail at[9].

Our general position is that identity criteria are highly
application specific and thus we offer the full spectrum
of choice between run time and precomputing. Further,
weaker identity statements than sameness are difficult to
use in queries, thus we prefer identity with semantics of
owl:sameAs but make this an option that can be turned on
and off query by query.

4. ENTITY RANKING
It is a common end user expectation to see text search

results sorted by their relevance. The term entity rank refers
to a quantity describing the relevance of a URI in an RDF
graph.

This is a sample query using entity rank:

prefix yago: <http://dbpedia.org/class/yago/>

prefix prop: <http://dbpedia.org/property/>

select distinct ?s2 as ?c1 where {

?s1 ?s1textp ?o1 .

?o1 bif:contains ’Shakespeare’ .

?s1 a yago:Writer110794014 .

?s2 prop:writer ?s1 .

} order by desc (<LONG::IRI_RANK> (?s2))

limit 20 offset 0

This selects works where a writer with Shakespeare in
some property is the writer.

Here the query returns subjects, thus no text search sum-

maries, so only the entity rank of the returned subject is
used. We order text results by a composite of text hit score
and entity rank of the RDF subject where the text occurs.
The entity rank of the subject is defined by the count of
references to it, weighed by the rank of the referrers and the
outbound link count of referrers. Such techniques are used
in text based information retrieval.[15]

One interesting application of entity rank and inference
on IFP’s and owl:sameAs is in locating URI’s for reuse. We
can easily list synonym URI’s in order of popularity as well
as locate URI’s based on associated text. This can serve in
application such as the Entity Name Server[14].

Entity ranking is one of the few operations where we take
a precomputing approach. Since a rank is calculated based
on a possibly long chain of references, there is little choice
but to precompute. The precomputation itself is straight-
forward enough: First all outbound references are counted
for all subjects. Next all ranks of subjects are incremented
by 1 over the referrer’s outbound link count. On successive
iterations, the increment is based on the rank increment the
referrer received in the previous round.

The operation is easily partitioned, since each partition
increments the ranks of subjects it holds. The referrers are
spread throughout the cluster, though. When rank is cal-
culated, each partition accesses every other partition. This
is done with relatively long messages, referee ranks are ac-
cessed in batches of several thousand at a time, thus absorb-
ing network latency.

On the test system, this operation performs a single pass
over the corpus of 2.2 billion triples and 356 million distinct
subjects in about 30 minutes. The operation has 100% uti-
lization of all 16 cores. Adding hardware would speed it up,
as would implementing it in C instead of the SQL procedures
it is written in at present.

The main query in rank calculation is

select O, P, iri_rank (S)

from rdf_quad table option (no cluster)

where isiri_id(O) order by O;

This is the SQL cursor iterated over by each partition.
The no cluster option means that only rows in this pro-
cess’ partition are retrieved. The RDF QUAD table holds the
RDF quads in the store, i.e. triple plus graph. The S, P, O
columns are the subject, predicate and object respectively.
The graph column is not used here. The textttiri rank is a
partitioned SQL function. This works by using the S argu-
ment to determine which cluster node should run the func-
tion. The specifics of the partitioning are declared elsewhere.
The calls are then batched for each intended recipient and
sent when the batches are full. The SQL compiler automat-
ically generates the relevant control structures. This is like
an implicit map operation in the map-reduce terminology.

An SQL procedure loops over this cursor, adds up the
rank and when seeing a new O, the added rank is persisted
into a table. Since links in RDF are typed, we can use
the semantics of the link to determine how much rank is
transferred by a reference. With extraction of named entities
from text content, we can further place a given entity into a
referential context and use this as a weighting factor. This
is to be explored in future work. The experience thus far
shows that we greatly benefit from Virtuoso being a general
purpose DBMS, as we can create application specific data

structures and control flows where these are efficient. For
example, it would make little sense to store entity ranks as
triples due to space consumption and locality considerations.
With these tools, the whole ranking functionality took under
a week to develop.

5. QUERY EVALUATION TIME LIMITS
When scaling the Linked Data model, we have to take it

as a given that the workload will be unexpected and that the
query writers will often be unskilled in databases. Insofar
possible, we wish to promote the forming of a culture of
creative reuse of data. To this effect, even poorly formulated
questions deserve an answer that is better than just timeout.

If a query produces a steady stream of results, interrupting
it after a certain quota is simple. However, most interesting
queries do not work in this way. They contain aggregation,
sorting, maybe transitivity.

When evaluating a query with a time limit in a cluster
setup, all nodes monitor the time left for the query. When
dealing with a potentially partial query to begin with, there
is little point in transactionality. Therefore the facet service
uses read committed isolation. A read committed query
will never block since it will see the before-image of any
transactionally updated row. There will be no waiting for
locks and timeouts can be managed locally by all servers in
the cluster.

Thus, when having a partitioned count, for example, we
expect all the partitions to time out around the same time
and send a ready message with the timeout information
to the cluster node coordinating the query. The condition
raised by hitting a partial evaluation time limit differs from
a run time error in that it leaves the query state intact on
all participating nodes. This allows the timeout handling to
come fetch any accumulated aggregates.

Let us consider the query for the top 10 classes of things
with “Shakespeare” in some literal. This is typical of the
workload generated by the faceted browsing web service:

define input:inference "yago"

select ?c count (*) where {

?s a ?c ; ?p ?o .

?o bif:contains "Shakespeare" .

} group by ?c order by desc 2 limit 10

On the first execution with an entirely cold cache, this
times out after 2 seconds and returns:

yago:class/yago/Entity100001740 566

yago:class/yago/PhysicalEntity100001930 452

yago:class/yago/Object100002684 452

yago:class/yago/Whole100003553 449

yago:class/yago/Organism100004475 375

yago:class/yago/LivingThing100004258 375

yago:class/yago/CausalAgent100007347 373

yago:class/yago/Person100007846 373

yago:class/yago/Abstraction100002137 150

yago:class/yago/Communicator109610660 125

The next repeat gets about double the counts, starting
with 1291 entities.

With a warm cache, the query finishes in about 300 ms (4
core Xeon, Virtuoso 6 Cluster) and returns:

yago:class/yago/Entity100001740 13329

yago:class/yago/PhysicalEntity100001930 10423

yago:class/yago/Object100002684 10408

yago:class/yago/Whole100003553 10210

yago:class/yago/LivingThing100004258 8868

yago:class/yago/Organism100004475 8868

yago:class/yago/CausalAgent100007347 8853

yago:class/yago/Person100007846 8853

yago:class/yago/Abstraction100002137 3284

yago:class/yago/Entertainer109616922 2356

It is a well known fact that running from memory is thou-
sands of times faster than from disk.

The query plan begins with the text search. The subjects
with “Shakespeare” in some property get dispatched to the
partition that holds their class. Since all partitions know the
class hierarchy, the superclass inference runs in parallel, as
does the aggregation of the group by. When all partitions
have finished, the process coordinating the query fetches the
partial aggregates, adds them up and sorts them by count.

If a timeout occurs, it will most likely occur where the
classes of the text matches are being retrieved. When this
happens, this part of the query is reset, but the aggregate
states are left in place. The process coordinating the query
then goes on as if the aggregates had completed. If there are
many levels of nested aggregates, each timeout terminates
the innermost aggregation that is still accumulating results,
thus a query is guaranteed to return in no more than n

timeouts, where n is the number of nested aggregations or
subqueries.

6. FACETS WEB SERVICE
The Virtuoso Facets web service is a general purpose RDF

query facility for facet based browsing. It takes an XML
description of the view desired and generates the reply as
an XML tree containing the requested data. The user agent
or a local web page can use XSLT for rendering this for the
end user. The selection of facets and values is represented as
an XML tree. The rationale for this is the fact that such a
representation is easier to process in an application than the
SPARQL source text or a parse tree of SPARQL and more
compactly captures the specific subset of SPARQL needed
for faceted browsing. All such queries internally generate
SPARQL and the SPARQL generated is returned with the
results. One can therefore use this is a starting point for
hand crafted queries.

The query has the top level element <query>. The child
elements of this represents conditions pertaining to a single
subject. A join is expressed with the property or property-
of element. This has in turn children which state conditions
on a property of the first subject. Property and property-
of elements can be nested to an arbitrary depth and many
can occur inside one containing element. In this way, tree-
shaped structures of joins can be expressed.

Expressing more complex relationships, such as intermedi-
ate grouping, subqueries, arithmetic or such requires writing
the query in SPARQL. The XML format is for easy auto-
matic composition of queries needed for showing facets, not
a replacement for SPARQL.

Consider composing a map of locations involved with
Napoleon. Below we list user actions and the resulting
XML query descriptions.

• Enter in the search form “Napoleon’:

<query inference="" same-as="" view3=""

s-term="e" c-term="type">

<text>napoleon</text>

<view type="text" limit="20" offset="" />

</query>

• Select the “types” view:

<query inference="" same-as="" view3=""

s-term="e" c-term="type">

<text>napoleon</text>

<view type="classes" limit="20" offset="0"

location-prop="0" />

</query>

• Choose “MilitaryConflict” type:

<query inference="" same-as="" view3=""

s-term="e" c-term="type">

<text>napoleon</text>

<view type="classes" limit="20" offset="0"

location-prop="0" />

<class iri="yago:ontology/MilitaryConflict" />

</query>

• Choose “NapoleonicWars”:

<query inference="" same-as="" view3=""

s-term="e" c-term="type">

<text>napoleon</text>

<view type="classes" limit="20" offset="0"

location-prop="0" />

<class iri="yago:ontology/MilitaryConflict" />

<class iri="yago:class/yago/NapoleonicWars" />

</query>

• Select “any location” in the select list beside the
“map” link, then hit “map” link:

<query inference="" same-as="" view3=""

s-term="e" c-term="type">

<text>napoleon</text>

<class iri="yago:ontology/MilitaryConflict" />

<class iri="yago:class/yago/NapoleonicWars" />

<view type="geo" limit="20" offset="0"

location-prop="any" />

</query>

This last XML fragment corresponds to the below text of
SPARQL query:

select ?location as ?c1 ?lat1 as ?c2 ?lng1 as ?c3

where {

?s1 ?s1textp ?o1 .

filter (bif:contains (?o1, ’"Napoleon"’)) .

?s1 a <yago:ontology/MilitaryConflict> .

?s1 a <yago:class/yago/NapoleonicWars> .

?s1 ?anyloc ?location .

?location geo:lat ?lat1 ; geo:long ?lng1 .

}

limit 200 offset 0

The query takes all subjects with some literal property
with “Napoleon” in it, then filters for military conflicts and
Napoleonic wars, then takes all objects related to these
where the related object has a location. The map has the
objects and their locations.

Figure 1: The displayed result

7. VOID DISCOVERABILITY
A long awaited addition to the LOD cloud is the Vocabu-

lary of Interlinked Data (VoID)[10]. Virtuoso automatically
generates VoID descriptions of data sets it hosts.

Virtuoso incorporates an SQL function rdf void gen

which returns a Turtle representation of a given graph’s
VoID statistics.

8. TEST SYSTEM AND DATA
The test system consists of two 2x4 core Xeon 5345,

2.33 GHz servers with 16G RAM and 4 disks each. The
machines are connected by two 1Gbit Ethernet connections.
The software is Virtuoso 6 Cluster. The Virtuoso server is
split into 16 partitions, 8 for each machine. Each partition
is managed by a separate server process.

The test database has the following data sets:

• Dbpedia 3.2

• Musicbrainz

• Bio2RDF

• Neurocommons

• Uniprot

• Freebase (95M triples)

• Ping The Semantic Web (1.6 million miscellaneous files
from http://www.pingthesemanticweb.com).

Ontologies:

• Yago

• Open CYC

• Umbel

• Dbpedia

The database is 2.2 billion triples with 356 million distinct
URI’s.

9. FUTURE WORK
All the functions discussed above are presently being pro-

ductized for delivery with Virtuoso 6, so that single servers
are open source and clusters commercial only. The most
relevant future work is thus final debugging and tuning of
existing functionality.

The technology will be first commercially used as a plat-
form for an Amazon EC2 offering of the whole LOD cloud
on a cluster of servers. This complements the existing line
of data sets pre-packaged by OpenLink[11].

For more sophisticated, also editable user facing function-
ality, OpenLink is presently working with the developers of
OntoWiki[12] on integrating the functionality discussed here
into OntoWiki as a new large-scale back-end. From this de-
velopment, we expect to have the functional equivalent of
Freebase[13], except with more data, working with open,
standard data models, being more integrable and above all
having a full range of deployment options. This means any-
thing from the desktop to the data center with either soft-
ware as service or installation at end user sites as options.

We presently rank search results on text match scores and
link density around the URI’s related to the text hits. We
expect having semantics associated with links to open new
possibilities in this domain. We plan to leverage link seman-
tics for ranking but as of this writing have not extensively
explored this.

10. CONCLUSIONS
We have presented a set of query processing techniques

and a web service and user interface for interactive brows-
ing of a large corpus of linked data. We have shown sig-
nificant scalability on low cost server hardware, with open
ended scale out capacity for larger data set sizes and more
concurrent usage.

The service described is online and is also packaged with
Virtuoso 6 open source distributions.

The technical experience derived from developing this ser-
vice emphasizes the following:

• Central importance of a SPARQL/SQL cost model
that is aware of hierarchies and is capable of sampling
data as needed. Without the right execution plan, no
amount of hardware will save the day.

• The importance of enforcing a cap on resource usage.

• The need for scale-out in order to have enough data
in memory. Disk is a far greater bottleneck than pro-
cessor or network speed. Scaling out in a shared noth-
ing fashion is by far the most economical and scalable
means of increasing total memory, disk bandwidth and
processing power.

• Additional verification of our capacity to schedule par-
allel query processing on a distributed memory cluster
without being killed by latency.

• Confirmation of the Virtuoso platform’s flexibility for
building additional data intensive services, such as en-
tity ranking.

Present work is therefore concentrated on refining and
productizing the platform and its RDF applications. We be-
lieve this to be a significant infrastructure element enabling
the take off of linked data.

11. REFERENCES
[1] Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: A

Core of Semantic Knowledge Unifying WordNet and
Wikipedia. WWW2007, ACM
978-1-59593-654-7/07/0005.

[2] Overview of OpenCyc.
http://www.cyc.com/cyc/opencyc/overview

[3] UMBEL Ontology, Vol. 1: Technical Documentation,
TR 08-08-28-A1.
http://www.umbel.org/doc/UMBELOntology vA1.pdf

[4] Auer, S.; Bizer, C.; Lehmann, J.; Kobilarov, G.;
Cyganiak, R.; Ives, Z.: DBpedia: A Nucleus for a Web
of Open Data. In Aberer et al. (Eds.): The Semantic
Web, 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC
2007, Busan, Korea, November 11-15, 2007. LNCS 4825
Springer 2007, ISBN 9783-540762973.

[5] The National Center for Biomedical Ontology:
Resources. http://bioontology.org/repositories.html

[6] OpenLink Software, Inc. Virtuoso 6 FAQ.
http://virtuoso.openlinksw.com/Whitepapers/
html/Virt6FAQ.html

[7] Brickley, D.; Miller, L.: FOAF Vocabulary Specification
0.91. http://xmlns.com/foaf/spec/

[8] Bojars, U.; Breslin, J.G. (eds.): SIOC Core Ontology
Specification http://rdfs.org/sioc/spec/

[9] Erling, O.: “E Pluribus Unum”, or “Inversely
Functional Identity”, or “Smooshing Without the
Stickiness”.
http://www.openlinksw.com/dataspace/
oerling/weblog/Orri%20Erling’s%20Blog/1498

[10] Hausenblas, M.: Discovery and Usage of Linked
Datasets on the Web of Data. NodMag #4. Available
at http://www.talis.com/nodalities/
pdf/nodalities issue4.pdf

[11] OpenLink Software, Inc. Virtuoso Universal Server
(Cloud Edition) AMI for EC2.
http://virtuoso.openlinksw.com/wiki/main/
Main/VirtuosoEC2AMI

[12] Auer, S.; Dietzold, S.; Riechert, T.: OntoWiki A Tool
for Social, Semantic Collaboration. 5th International
Semantic Web Conference, Nov 5th–9th, Athens, GA,
USA. In I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273,
pp. 736-749, 2006. Springer-Verlag Berlin Heidelberg
2006.

[13] Metaweb Technologies, Inc.: What is Freebase?
http://www.freebase.com/view/en/what is freebase

[14] Stoermer, H.: Entity Name System: The Back-bone of
an Open and Scalable Web of Data. In: Proceedings of
the IEEE International Conference on Semantic
Computing, ICSC 2008, number CSS-ICSC
2008-4-28-25. IEEE, August 2008. Available at
http://www.okkam.org/publications/
stoermer-EntityNameSystem.pdf/at download/file

[15] Brin, S., Page, L.: The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In: Seventh
International World-Wide Web Conference (WWW
1998), April 14-18, 1998, Brisbane, Australia. Available
at http://ilpubs.stanford.edu:8090/361/

