
LDOW, WWW’09

April 20, 2009,

M d id S iMadrid, Spain

MashQLMashQL
A Data Mashup Language for theA Data Mashup Language for the

Data Web

Dr. Mustafa Jarrar
mjarrar@cs.ucy.ac.cy

HPCLab, University of Cyprus

Published As:
Mustafa Jarrar and Marios D. Dikaiakos: A Data Mashup Language for the Data Web. Proceedings of
LDOW, part of WWW’09. ACM. 2009.

University of Cyprus © 2009

Motivation Motivation (Querying the Data Web)

But how?
Can I eat it as eating Web Feeds?

I want you to taste
the Data Web? Can I eat it as eating Web Feeds?the Data Web?

Can we query and mash up the Data q y p
Web as simple as filtering and

piping Web Feeds?piping Web Feeds?

We fundamentally investigate this problem from a
Query Formulation viewpointQuery Formulation viewpoint.

 A “data mashup” is a query.

Outline

• Challenges

• Related Work• Related Work

• MashQL (A Query Formulation Language)

• Evaluation

• Conclusions and Discussion

University of Cyprus © 2009

Challenges
www.site1.com/rdf

I don’t know the schema!
(Black-box query)

:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S ”:B2 :Author Abiteboul S.

We need a way to allow end-users formulate queries over
structured data assuming that:

Problem Definition

g
 The user does not know the schema. (1)

University of Cyprus © 2009

Challenges
www.site1.com/rdf

:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S ”:B2 :Author Abiteboul S.

Does not adhere to
schema or ontology!

How to allow end-users formulate queries over structured data
assuming that:

Problem DefinitionProblem Definition

g
 The user does not know the schema. (1)
 There is no offline or inline schema\ontology. (2)

University of Cyprus © 2009

Challenges
www.site1.com/rdf

Allow me to easily
Compose what I need !

:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S ”

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”

www.site2.com/rdf

:B2 :Author Abiteboul S.

: : ut o o a a
:A1 :Author “Bob Hacker”
:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

How to allow end-users formulate queries over structured data
assuming that:

Problem Definition :A2 :Year 2005

g
 The user does not know the schema. (1)
 There is no offline or inline schema\ontology. (2)
 The query may involve multiple sources. (3)

University of Cyprus © 2009

Challenges
www.site1.com/rdf

General Solution!

:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S ”

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”

www.site2.com/rdf

:B2 :Author Abiteboul S.

: : ut o o a a
:A1 :Author “Bob Hacker”
:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

How to allow end-users formulate queries over structured data
assuming that:

Problem Definition :A2 :Year 2005

g
 The user does not know the schema. (1)
 There is no offline or inline schema\ontology. (2)
 The query may involve multiple sources. (3)
 The query language is sufficiently expressive (4)

(not a single-purpose interface)
University of Cyprus © 2009

Related Work

Query formulation is the art of accessing and consuming structured
data easily. (interdisciplinary subject)

Assumption Query by
Form

Query by
Example

Conceptual
Queries NL

Queries
Interactive

Queries
Visual

Scriptingp Form Example (ConQuer) Queries (Lorel)
p g

(DeriPipes)

Don't know
the schema      

Schema-free
data     - 

Multiple


Multiple
sources      

Expressive     - 

Intuitive      

University of Cyprus © 2009

MashQL MashQL

A graphical query formulation Language.

all of these assumptions:
 The user does not know the schema

 The user does not know the schema.
 There is no offline or inline schema\ontology.
 The query may involve multiple sources.
 The query language is expressive

Challenging
combination

 The query language is expressive.
(not a single-purpose interface)

University of Cyprus © 2009

MashQL MashQL

A general structured-data retrieval solution.
(not merely an interface)

Without loosing this generality, we

(not merely an interface)

 Focus on RDF, as the most primitive query language, other
data models can be mapped into it.

 Follow Yahoo Pipes’ visualization, in order to illustrate that
Data Web can be queried and mashed up as Web Feeds.

University of Cyprus © 2009

Example 1

“Lara’s articles after 2007?” www.site1.com/rdf
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008

RDF Input

From:
http://www.site1.com/rdf

http://www.site2.com/rdf

:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

Query

Everything

p

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”

1 200

www.site2.com/rdf

Everything

Author “^Lara”

Year\PubYear > 2007

Title ArticleTitle

:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

 Interactive Query Formulation.
 MashQL queries are translated into and executed as SPARQL.

University of Cyprus © 2009

Example 1

“Lara’s articles after 2007?” www.site1.com/rdf
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008

RDF Input

From:
http://www.site1.com/rdf

http://www.site2.com/rdf

:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

p

Query

Everything

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”

1 200

www.site2.com/rdf

Everything :A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

University of Cyprus © 2009

Example 1

“Lara’s articles after 2007?” www.site1.com/rdf
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008

RDF Input

From:
http://www.site1.com/rdf

http://www.site2.com/rdf

:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

Query

Everything

p

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”

1 200

www.site2.com/rdf

Everything

Types

A1
A2
B1
B2

Everything

Individuals

:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

SELECT X WHERE {?X ?P ?O}

Background queries

SELECT X WHERE {?S rdf:Type ?X}

SELECT X WHERE {?X ?P ?O}
Union
SELECT X WHERE {?S ?P ?X}

University of Cyprus © 2009

Example 1

“Lara’s articles after 2007?” www.site1.com/rdf
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008

RDF Input

From:
http://www.site1.com/rdf

http://www.site2.com/rdf

:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

Query

Everything

p

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”

1 200

www.site2.com/rdf

Everything

Author
Title
PubYear
Type

Author
Author

Equals
Contains
OneOf
Not
Between
L Th

Equals
Contains

LaraContains
:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

Type
Year

LessThan
MoreThan

SELECT P WHERE {?Everything ?P ?O}

Background query

University of Cyprus © 2009

Example 1

“Lara’s articles after 2007?” www.site1.com/rdf
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008

RDF Input

From:
http://www.site1.com/rdf

http://www.site2.com/rdf

:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

Query

Everything

p

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”

1 200

www.site2.com/rdf

Everything

Author
Title
Author

Author “^Lara

Year\PubYear
Equals
Contains
OneOf

MoreTh 2007
Equals

:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

PubYear
Type
YearYear

PubYear
OneOf
Not
Between
LessThan
MoreThanMoreThan

SELECT P WHERE {?Everything ?P ?O}

Background query

University of Cyprus © 2009

Example 1

“Lara’s articles after 2007?” www.site1.com/rdf
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008

RDF Input

From:
http://www.site1.com/rdf

http://www.site2.com/rdf

:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

Query

Everything

p

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”

1 200

www.site2.com/rdf

Everything

Author “^Lara

Year\PubYear > 2007

A hA h
Title ArticleTitle

:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

Author
Title
PubYear
Type
Year

Author
Title

SELECT P WHERE {?Everything ?P ?O}

Background query

University of Cyprus © 2009

Example 1

“Lara’s articles after 2007?” www.site1.com/rdf
:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008

RDF Input

From:
http://www.site1.com/rdf

http://www.site2.com/rdf

:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

Query

Everything

p

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”

1 200

www.site2.com/rdf

PREFIX S1: <http://site1.com/rdf>

Everything

Author “^Lara

Year\PubYear > 2007

Title ArticleTitle

:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

p
PREFIX S2: <http://site1.com/rdf>
SELECT ?ArticleTitle
FROM <http://site1.com/rdf>
FROM <http://site2.com/rdf>
WHERE {
{?X S1:Author ?X1} UNION {?X S2:Author ?X1}
{?X S1:PubYear ?X2} UNION {?X S2:Year ?X2}
{{?X S1:Title ?ArticleTitle} UNION {?X S2:Title
?ArticleTitle}}
FILTER regex(?X1, “^Hacker”)

FILTER (?X2 > 2000)}University of Cyprus © 2009

Example 2

“Recent articles from Cyprus?”

Query

A ti lArticle
Title ArticleTitle
Author

Address
Country “Cyprus”

Year > 2008

 Retrieve every Article that: has a title, written by author, who has y , y ,
address, this address has a country called Cyprus, and the article is
published after 2008.

University of Cyprus © 2009

The Intuition of MashQL

A query is a tree

• The root is called the query subject.
Query

A ti lArticle q y j

• Each branch is a restriction.

Article
Title ArticleTitle
Author

Address

Article

Address ?X11

Author ?X1

Title ?ArticleTitle

• Branches can be expanded,
(information path)

Obj t l filt

Country “Cyprus”
Year > 2008Year ?X2 < 2008

Country
?X111 = “Cyprus”

• Object value filters

Def. A Query Q with a subject S, denoted by Q(S), is a set of restrictions on S. Q(S) = R1 AND … AND Rn.
Dif. A Subject S  (I V), where I is an identifier and V is a variable.

Dif. A Restriction R = <Rx , P, Of>, where Rx is an optional restriction prefix that can be (maybe | without),
P is a predicate (P  I V), and Of is an object filter.

University of Cyprus © 2009

The Intuition of MashQL

An Object filter is one of :
E l

Query

• Equals
• Contains
• MoreThan
• LessThanA ti l • LessThan
• Between
• one of
• Not(f)

Article
Title ArticleTitle
Author

Address Not(f)
• Information Path (sub query)

Def An object filter O <O f> where O is an object and f is a filtering function one of

Country “Cyprus”
Year > 2008

Def. An object filter Of = <O, f>, where O is an object and f is a filtering function one of :
Of = <O>, where O is an object, O  V I.
Of = <O, Equals(X, T, Lt)>, where X can be a variable or a constant, T is a datatype, and Lt is a language tag.
Of = <O, Contains(X, T, Lt)>, where O is an object variable, X is a regex literal, T is a data type, and Lt is a language.
Of = <O, MoreThan(X, T)>, where O is an object variable, X is a variable or a constant, T is a datatype.
Of = <O, LessThan(X, T)>, where O is an object variable, X is a variable or a constant, T is a datatype identifier.Of O, LessThan(X, T) , where O is an object variable, X is a variable or a constant, T is a datatype identifier.
Of = <O, Between(X, Y, T)>, where X and Y are variables or constants, T is a datatype identifier.
Of = <O, OneOf(V)>, where O is an object variable, and V is a set of values {v1, ... , vn}, vi is a variable or constant.
Of = <O, Not(f)>, where f is one of the functions defined above.
Of = <O, Qi(O)>, where O is an object (O  V I), and Qi(O) is a sub‐query with O being the query subject.

University of Cyprus © 2009

More MashQL Constructs

 Resection Operators {Required, Maybe, or Without}
All restriction are required (i.e. AND), unless they are prefixed with
“maybe” or “without”

Song

Title SongTitle

Query
SELECT ?SongTitle, AlbumTitle
WHERE {
{?X :Title ?SongTitle.g

Artist Shakera

maybe Album AlbumTitle

without Copyright

{? : t e ?So g t e.
?X :Artist :Shakera
Optional{?X :Album ?AlbumTitle}
Optional{?X :Copyrihgt ?X2}
Filter FILTER (!Bound(?X2)).y g

University of Cyprus © 2009

More MashQL Constructs

 Union operator (denoted as “\”) between
SELECT ?Person
WHERE {

?Person :WorkFor :Google
UNION

?Person WorkFor :Yahoo}

Objects

SELECT ?FName
WHERE {
?Person :Surname ?FName
UNION

?Person :Firstname ?FName}

Predicates

SELECT ?AgentName, ?AgentPhone
WHERE {
{?Person rdf:type :Person.
?Person :Name ?AgentName.
?Person :Phone ?AgentPhone}

Subjects
UNION
{?Company rdf:type :Company.
?Company :Name ?AgentName.
?Company :Phone ?AgentPhone}}

SELECT ?CustName,
WHERE {WHERE {

?Person :Name ?CustName.
UNION
{?Company :Title ?CustName.
?Company :City ?X1.
FILTER regex(?X1, “Paris”)}}

Queries
University of Cyprus © 2009

More MashQL Constructs

And several other constructs, including:
 Types Types

 and Reverse Predicates

 Datatypes and Language Tags Datatypes and Language Tags
 ….

University of Cyprus © 2009

Formal Syntax and Semantics

Def.1 (Dataset): A dataset D is a set of triples, each triple t is formed as <S, P, O>, where S  I, P  I, and O  I  L.
Def.2 (Typed Literals): Every object literal must have a datatype D: If O  L then O  D.
Def 3 (Language Tags): An object literal (O  L) may have a language tag LDef.3 (Language Tags): An object literal (O  L) may have a language tag Lt.
Def. 4 (Query): A Query Q with a subject S, denoted by Q(S), is a set of restrictions on S. Q(S) = R1 AND … AND Rn.
Def. 5 (Subject): A subject S  (I  V), where I is an identifier and V is a variable.
Def. 6 (Restriction): A restriction R = <Rx , P, Of>, where Rx is an optional restriction prefix that can be (maybe | without), P is a predicate (P  I  V), and Of is
an object.
Def.7 (Object Filter): An object filter Of = <O, f>, where O is an object and f is a filtering function. An object filter can have one of the following nine forms:

1. Of = <O>, where O is an object, O  V  I. This is the simplest object filter, i.e., it does not add any restriction on the object value of the retrieved triples.
2 O = <O Equals(X T L)> where X can be a variable or a constant T is a datatype and L is a language tag This filter restricts the retrieved results such2. Of = <O, Equals(X, T, Lt)>, where X can be a variable or a constant, T is a datatype, and Lt is a language tag. This filter restricts the retrieved results, such

that, the object value O should be equal to X, with datatype T, and with language Lt.
3. Of = <O, Contains(X, T, Lt)>, where O is an object variable, X is a regex literal, T is a data type, and Lt is a language. This filter restricts the retrieved results,

such that, the object value O should be equal to regex(X), with datatype T, and with language Lt. A regex literal is a literal that contains a regular expression
matching pattern.

4. Of = <O, MoreThan(X, T)>, where O is an object variable, X is a variable or a constant, T is a datatype. This filter restricts the retrieved results, such that, the
object value O should be more than X and with datatype T.

5. Of = <O, LessThan(X, T)>, where O is an object variable, X is a variable or a constant, T is a datatype identifier. This filter restricts the retrieved results, such5. Of O, LessThan(X, T) , where O is an object variable, X is a variable or a constant, T is a datatype identifier. This filter restricts the retrieved results, such
that, the object value O should be less than X and with datatype T (see rule-9).

6. Of = <O, Between(X, Y, T)>, where X and Y are variables or constants, T is a datatype identifier. This filter restricts the retrieved results, such that, the object
value O should be more than or equals X, less than or equals Y, and with datatype T.

7. Of = <O, OneOf(V)>, where O is an object variable, and V is a set of values {v1, ... , vn}, vi is a variable or constant. This filter restricts the retrieved results,
such that, the object value O should be equal to one of the values in V.

8. Of = <O, Not(f)>, where f is one of the functions defined above. This filter extends all of the above functions with simple negation. The filter is same as the
Equals filter but with negation, i.e., Not Equal.q g , , q

9. Of = <O, Qi(O)>, where O is an object (O  V  I), and Qi(O) is a sub-query with O being the query subject. The restrictions defined in the sub-query Qi(O)
should be satisfied as well. Notice that this definition is recursive; however, this does not mean the query itself is recursive.

Def.8 (Types): A subject (S  I) or an object (O  I) can be prefixed with “a” or “an” to mean the instances of this subject/object type, instead of the subject/object
itself.
Def.9 (Union): A union can be declared between objects, predicates, subjects and/or queries, in the following forms:

1. On = <O1\O2 \ . . . \On>, to indicate unions between objects, where Oi  I.
2. Pn = <P1\P2 \ . . . \Pn>, to indicate unions between predicates, where Pi  I.
3. Sn = <S1\S2 \ . . . \Sn>, to indicate unions between subjects, where Si  I.
4. Qn = <Q1\Q2 \ . . . \Qn>, to indicate unions between queries.

Def.10 (Reverse): <~P> indicates the reverse of the predicate P. Let R1 be a restriction on S such that <S P O>, and R2 be <O ~P S>, R1 and R2 have the same
meaning.

University of Cyprus © 2009

Query Formulation Algorithm

Formalization of the background queries
Select Subject S
(1) S S ((D)) (1’) O1 {(?S1 < T > ?O1)}(1) S  ST :  O ( P=‘:Type’ (D)) (1’) O1:{(?S1 <:Type> ?O1)}
(2) S  SI :  S (D)   O (O (D)) (2’) S1:{(?S1 ?P1 ?O1)} UNION O1:{(?S1 ?P1?

O1). Filter isURI(?O1)}
(3) S  V

Select a property P
(4) (S  ST)  P  P2 ( P1=‘:Type’  O1=Subject (D) S1=S2  (D)) (4’) P2:{(?S1 <:Type> <S>)(?S2 ?P2 ?O2)}
(5) (S  SI) P   P (S=Subject (D)) (5’) P1:{(<S> ?P1 ?O1)}

(6) (S  V)  P   P ( (D)) (6’) P1:{(?S1 ?P1 ?O1)}

(7) P V(7) P  V

Add a filter on P
(8) (S  SI)  (P  V)  O   O1 (S1=S  O1 (D)) (8’) O1:{(<S> ?P1 ?O1) Filter isURI(?O1)}

(9) (S  SI)  (P  V)  O   O1 (S1 S P1 P O1 (D)) (9’) O1:{(<S> <P> ?O1) Filter isURI(?O1)}(9) (S  SI)  (P  V)  O   O1 (S1=S  P1=P  O1 (D)) (9) O1:{(<S> <P> ?O1) Filter isURI(?O1)}

(10) (S  ST)  (P  V)  O   O2 (P1=‘:Type’  O1=S (D) S1=S2  (D)) (10’) O1:{(?S1 <:Type> <S>)(?S1 ?P2 ?O2)}

(11) (S  ST)  (P  V)  O  O2 (P1=‘rdf:Type’  O1=S (D) S1=S2 P2=P
(D))

(11’) O:{(?S <rdf:Type> <S>)(?S <P> ?O)}

(12) (S  V)  (P  V)  O   O ( (D)) (12’) O1:{(?S1 ?P1 ?O1)}() () () O (()) ()
(13) (S  V)  (P  V)  O   O (P=P (D)) (13’) O1:{(?S1 <P> ?O1)}

University of Cyprus © 2009

MashQL-SPARQL Mapping Rules

Rule-1: The symbol  before a variable means that it will be returned in the results; i.e., included in the SELECT part of in SPARQL. If the
output of the query is input to another, use “CONSTRUCT *”.
Rule 2: In any of the following rules if a subject predicate or object is italicized: it is seen as a SPARQL variable i e prefixed with “?”Rule-2: In any of the following rules, if a subject, predicate, or object is italicized: it is seen as a SPARQL variable, i.e. prefixed with “?”.
Rule-3: If S is a subject and R = < , P, Of>, the mapping is: {S P O}.
Rule-4: If S is a subject and R = <maybe, P, Of>, the mapping is: {OPTIONAL{S P O}}.
Rule-5: If S is a subject and R = < without, P, Of>, the mapping is: {S P O. FILTER (!bound(?O))}.
Rule 6. If Of = <O, Equals(X, T, Lt)>:

Append the mapping with: FILTER(?O = X)
If T  Null: Append the mapping with: FILTER(datatype(?O)=T)
If Lt  Null: Append the mapping with: FILTER(lang(?O) = Lt)If Lt  Null: Append the mapping with: FILTER(lang(?O) = Lt)

Rule 7. If Of = Contains(X, T, Lt)>:
Append the mapping with: FILTER regex(?O, X)
If T  Null: Append the mapping with: FILTER(datatype(?O)=T)
If Lt  Null: Append the mapping with: FILTER(lang(?O) = Lt)

Rule 8. If Of = <O, MoreThan(X, T)>:
Append the mapping with: FILTER(?O > X)
If T  Null: Append the mapping with: FILTER(datatype(?O=T)

Also mapped into
Oracle’s SPARQLIf T  Null: Append the mapping with: FILTER(datatype(?O T)

Rule 9. If Of = <O, LessThan(X, T)>:
Append the mapping with: FILTER(?O < X)
If T  Null: Append the mapping with: FILTER(datatype(?O=T)

Rule 10. If Of = <O, Between(X, Y, T)>:
Append the mapping with: FILTER(?O >=X)&& FILTER(?O<=Y)

If T  Null: Append the mapping with: FILTER(datatype(?O)=T)
Rule 11. If Of = <O, OneOf (V)>:

Q

, ()
Append the mapping with: {FILTER(?O = V1)|| . . . || FILTER(?O = Vn)}
If Vi is a regex-ed literal, the ith filter above should be replaced with: FILTER Regex(?O, Vi)

Rule 12. If Of = <O, Not(f)>: The f filter will be generated as above, but with a negation.
Rule 13. If Of = <O, Qi(O)>: Repeat all mapping rules to generate Qi(O).
Rule 14. If a subject S is prefixed with “a” or “an”: Append the mapping with: {?S rdf:type :S}
Rule 15. If an object O is prefixed with “a” or “an”: Append the mapping with: {?O rdf:type :O}
Rule 16. Given On , If n >1 and Oi  I : The mapping in rules 3-4 will be:{{S P :O1} UNION . . . UNION {S P :On}}pp g {{ } { }}
Rule 17. Given Pn , If n >1 and Pi  I : The mapping in rules 3-4 will be: {{S :P1 O} UNION . . . UNION {S :Pn O}}
Rule 18. Given Sn , If n >1 and Si  I : Regenerate the query n times, each time with Si as a root, and with a UNION between the queries.
Rule 19. Given Qn , If n >1 : Add UNION between the n queries.
Rule 20. If S is a subject and R = <~P, O>, the mapping is: {O P S}.

University of Cyprus © 2009

MashQL Editor

 Alpha version (will be public soon)
 Web Ajax based Web Ajax-based.
 Open sources Java Script libraries (from Yahoo)
 Oracle 11g as RDF store.
 Graphs Summaries for fast user-interaction.
 URI Normalization based on heuristics.

(but some URIs are too cryptic)

University of Cyprus © 2009

MashQL Firefox Add-On (Light-mashups @ your browser)

University of Cyprus © 2009

Evaluation (DBLP, Experiment 1)

(User Interaction Response Time)
How long it takes to generate the next list?

 O:(?S Type ?O)

 P:(?S Type Article)(?S ?P ?O1)

Any Article

Title “^World-Wide Web”



Query

 P:(?S Type Article)
(?S Creator ?O1) (?O1 ?P ?O2)

 O:(?S Type Article)

Creator

Type Person

Name “^Berners-Lee”









DBLP (9M i l)

(?S Creator ?O1)(?O1 Type ?O)

DBLP (4M i l) DBLP (2M i l)

Year > 2007

Query DBLP (9M triples)
GS Oracle

Q1 0.003 0.005
Q2 0.001 0.136

DBLP (4M triples)
GS Oracle
0.003 0.004
0.001 0.148

DBLP (2M triples)
GS Oracle
0.003 0.003
0.001 0.108Q2

Q3 0.001 0.187
Q4 0.001 1.208

0.001 0.846
0.001 0.835

0.001 0.671
0.001 0.650

University of Cyprus © 2009

Evaluation (DBPedia, Experiment 2)

 P:(?S :Type :Album)

(?S :PreviousAlbum ?O1)

(?O1 ?P ? O2)

DBPedia (4 M)
0.003
0 002

DBPedia (8 M)
0.003
0 002

DBPedia (16 M)
0.003
0 002

Query DBPedia (32 M)
Q1 0.003
Q 0 002 0.002

0.003
0.004
0.004
0 005

0.002
0.003
0.004
0.004
0 005

0.002
0.004
0.004
0.004
0 005

Q2 0.002
Q3 0.005
Q4 0.005
Q5 0.005
Q 0 005 0.005

0.007
0.005
0.006

0.005
0.007
0.005
0.007

0.005
0.007
0.005
0.007

Q6 0.005
Q7 0.007
Q8 0.005
Q9 0.007 University of Cyprus © 2009

Evaluation (DBPedia, Experiment 3)

 P3:(?S Type ?Album)

(?S ?RelatedTo1 ?O1)

(?O1 ?RelatedT02 ?O2)

(?O2 ?P3 ?O4)

(B32) 32 MQuery (B32) 32 M
GS Oracle

Q1 0.001 0.027
Q2 0.026 17.450

DBPedia (16 M)

0.001
0.010

DBPedia (8 M)

0.001
0.006

DBPedia (4 M)

0.001
0.005

Q3 0.048 49.656
Q4 0.087 5348.7
Q5 0.135 -
Q 0 185 -

0.010
0.022
0.036
0 055

0.011
0.017
0.032
0 047

0.010
0.011
0.011
0 016Q6 0.185

Q7 0.234 -
Q8 0.265 -
Q9 0.280 -

0.055
0.076
0.098
0.110

0.047
0.061
0.077
0.092

0.016
0.023
0.027
0.034University of Cyprus © 2009

Conclusions

 “Query and mash up the Data Web as simple as filtering up y p p g p
Web Feeds” is a query formulation problem.

 End-users can navigate, query, and mash up unknown graphs.
without knowing the schema. Data is schema-free. Multiple sources.

 MashQL is expressive as SPARQL.
Except NAMED GRAPH.

 MashQL is not merely a SPARQL interface, or limited RDF.
It has its own path-pattern intuition (can be similarly used for XML and DB).p p (y)

Future Work

salt, spices ,… !!!!sa , spces ,

 Reasoning Keyword Search Aggregation Functions etc Reasoning, Keyword Search, Aggregation Functions, etc.

 Results Presentation (Should be tacked fundamentally).

 Firefox add-on Mashup/query editor. e o add o as up/que y ed to

 RDF summaries for SPARQL optimization.

 ..

Thank YouThank You

Dr Mustafa JarrarDr. Mustafa Jarrar
mjarrar@cs.ucy.ac.cy

HPCLab, University of Cyprus

Jarrar-University of Cyprus

y yp

