

Towards data fusion in a multi-ontology environment

Andriy Nikolov Victoria Uren Enrico Motta

Public linked data

Issues

- Pairwise linking of datasets
 - Scale will grow
 - More effort needed to include "yet another" dataset to the cloud
- Automation would be useful

Challenges

- Instance matching
 - Aggregated attribute similarity
 - Usually configured manually for each pair of datasets and for each class
 - SILK, LinkedMDB,...
- Schema heterogeneity
 - Which datasets overlap?
 - Which attributes to compare?
- Employ automatic schema matching

Schema mismatches [11]

- -Scope
 - dbpedia:Company ∨s sweto:Company ∩ sweto:Bank
- Granularity
 - foaf:Person vs dbPedia:Politician
- Modelling style
 - "red" vs #FF0000
- Terminological
 - Company vs Corporation

Schema matching

- Many existing tools (OAEI)
 - Lily
 - Falcon-AO
 - -CIDER,

– ...

Features

- Produce DL relations between concepts and attributes (≡ , ⊑)
- Focus on terminological mismatches

KnoFuss

- Designed for the corporate knowledge management scenario
- Single common schema
- Workflow
 - Coreference resolution
 - Attribute-based similarity
 - Coreference refinement
 - Analysis of links, constraints and provenance
- Extendable library of methods

Task decomposition

Filtering

- Produce candidate mappings
- Remove conflicting mappings based on the similarity score

Query translation

```
SELECT ?uri WHERE {
  ?uri rdf:type sweto:Computer_Science_Researcher }
SELECT ?uri WHERE {
  { ?uri rdf:type tap:ComputerScientist }
  UNION
  { ?uri rdf:type tap:MedicalScientist }
  UNION
  { ?uri rdf:type tap:CMUPerson } }
```


Setup

- Datasets
 - TAP
 - SWETO
 - DBPedia
- Ontology matching
 - CIDER (Gracia & Mena, 2008)
 - Lily (Wang & Xu, 2008)
- Instance coreference resolution
 - String similarity (Jaro-Winkler, L2 Jaro-Winkler)

Tests (F1-measure)

Datasets	manual	CIDER	Lily
TAP/SWETO	0.77	0.76	0.42
TAP/DBPedia	0.88	0.66	0.44
SWETO/DBPedia	0.89	0.81	0.70

- Instance coreference resolution
 - String similarity (Jaro-Winkler, L2 Jaro-Winkler)

Conclusions

- Schema-level recall is important (even at the expense of precision)
 - CIDER outperformed Lily
 - Finding overlapping classes
- Restrictions are very useful
 - Disjointness, cardinality
 - Public reference ontology may help?
- Provenance of linksets is crucial
 - Extending coreference bundles?

Questions?

Thanks for your attention

Tests

CIDER

All schema mappings above the threshold are accepted

Lily

- One-to-one schema mappings
- "Competitive" schema mappings are removed
- -(+) Higher schema alignment precision
- (-) Negative impact at the data level

Schema mismatches [11]

Future work

- Original version
 - Sequential workflow
 - Schema integration -> data integration
 - Omitted schema mappings lower datalevel recall
- To do:
 - Iterative workflow (as in (Udrea et al., 2007))
 - Discovery of omitted schema mappings based on instance-level matches

