
Data.dcs: Converting Legacy Data into Linked Data∗
∗

Matthew Rowe
OAK Group

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello Street
S1 4DP Sheffield, United Kingdom
m.rowe@dcs.shef.ac.uk

ABSTRACT
Data.dcs is a project intended to produce Linked Data de-
scribing the University of Sheffield’s Department of Com-
puter Science. At present the department’s web site con-
tains important legacy data describing people, publications
and research groups. This data is distributed and is pro-
vided in heterogeneous formats (e.g. HTML documents,
RSS feeds), making it hard for machines to make sense
of such data and query it. This paper presents an ap-
proach to convert such legacy data from its current form
into a machine-readable representation which is linked into
the Web of Linked Data. The approach describes the triplifi-
cation of legacy data, coreference resolution and interlinking
with external linked datasets.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: General

General Terms
Linked Data

Keywords
Linked Data, Triplification, Coreference Resolution

1. INTRODUCTION
Recent work has addressed the issue of producing linked data
from data sources conforming to well-stuctured relational
databases [2]. In such cases data already follows a logical
schema making the creation of linked data a case of schema
mapping and data transformation. The majority of the Web
however does not conform to such a rigid representation,
instead the heterogeneous structures and formats which it
exhibits makes it hard for machines to parse and interpret

∗The research leading to these results has received funding
from the EU project WeKnowIt10 (ICT-215453).
∗Copyright is held by the author/owner(s).
LDOW2010, April 27, 2010, Raleigh, USA.

such data. This therefore makes the process of producing
linked data limited.

In this paper we use the case of the University of Sheffield’s
Department of Computer Science (DCS). The DCS web site
contains information about people - such as their name,
email address, web address and location, research groups
and publications. The department provides a publication
database located separately from the main site on which
DCS members manually upload their papers. Each mem-
ber of the department is responsible for their own personal
web page, this has lead to the formatting and presentation
of legacy data to vary greatly between pages, where some
pages contain RDFa and others are plain HTML documents
with the bare minimum of markup. This impacts greatly
on the usability of the site in general and the slow process
by which information can be acquired. For instance find-
ing all the publications which two or more research groups
have worked on in the past year would take a large amount
of filtering and data processing. Furthermore the publica-
tion database is rarely updated to reflect publications by the
department and its members.

This use case presents a clear motivation for generating a
richer representation of legacy data describing the DCS. We
define legacy data as data which is present in proprietary
formats and which describes important information about
the department - i.e. publications. Leveraging legacy data
from HTML documents which make up the DCS web site
and converting this data into a machine-readable form us-
ing formal semantics would link together related informa-
tion. It would link people with their publications, research
groups with their members and allow co-authors of research
papers to be found. Furthermore by linking the dataset into
the Web of Linked Data would allow additional information
to be inferred such as the conferences which members of the
DCS have attended and provide up-to-date publications list-
ings - thereby avoiding the current slow update process by
linking to popular bibliographic databases such as DBLP.

In this paper we document our current efforts to convert
this legacy data to linked data. We present our approach to
pursue this goal which is comprised of three stages: first we
perform triplification of legacy data found within the DCS
- by extracting person information from HTML documents
and publication information from the current bibliography
system. Second we perform coreference resolution and inter-
linking of the produced triples - thereby linking people with

their publications and fusing data within separate HTML
documents together. Third we connect our produced dataset
to distributed linked datasets in order to provide additional
information to agents and humans browsing the dataset.

We have structured the paper as follows: section 2 describes
related work in the field of producing linked data from legacy
data and discusses similar efforts to our problem setting ex-
plored within the information extraction community. Sec-
tion 3 presents a brief overview of our approach and the
pipeline of the architecture which is employed. Section 4 de-
scribes the triplication process which generates triples from
legacy data within HTML documents and the publication
database. Section 5 presents the SPARQL rules we em-
ployed to discover coreferring entities. Section 6 describes
our preliminary method for weaving our dataset into the
linked data cloud. Section 7 finishes the paper with the con-
clusions which we have learnt from this work and our plans
for future work.

2. RELATED WORK
Recent efforts to construct linked data from legacy data
include Sparqplug [4] where linked data models are con-
structed based on Document Object Model (DOM) struc-
tures of HTML documents. The DOM is parsed into an
RDF model which then permits SPARQL [11] queries to
be processed over the model and relevant information re-
turned. Although this work is novel in its approach to se-
mantifying web documents, the approach is limited by its
lack of rich metadata descriptions attributed to elements
within the DOM. Existing work by [2] presents an approach
to expose linked data from relational databases by creating
lightweight mapping vocabularies. The effect is such that
data which previously corresponded to a bespoke schema is
provided as RDF according to common ontological concepts.
Metadata generation - so called triplification - is discussed
extensively in [10] in order to generate metadata describing
conferences, their proceedings, attendees and organisations
participating. Due to the wide variation in the provided
data formats - i.e. excel spreadsheets, table documents -
metadata was generated by hand. Despite this such work
provides a blue print for generating metadata by describing
the process in detail and the challenges faced.

The challenges faced when converting legacy data devoid of
metadata and semantic markup into a machine-processable
form involves exposing such legacy data and then construct-
ing metadata models describing the data. In the case of
the DCS web site our goal is to generate metadata describ-
ing members of the department, therefore we must extract
this legacy data to enable the relevant metadata descrip-
tions to be built. Work within the field of information ex-
traction provides similar scenarios to the problems which
we face, For instance extraction of person information from
within HTML documents has been addressed in [14] by seg-
menting HTML documents into components based on the
Document DOM of the web pages. Person information is
then extracted using induced wrappers from labelled per-
sonal pages. [15] uses manually created name patterns to
match person names within a web page and then, using a
context window surrounding the match, extract contextu-
ally relevant information surrounding the name. The DOM
of HTML documents is utilised in work by [17] to provide

clues to regions within the documents from which person
information should be extracted. Once regions of extrac-
tion have been identified then extraction patterns are used
to extract relevant information based on its proximity in the
document. An effort to extract personal information (name,
email, homepage, telephone number) from within web pages
has been presented in [3] using a system called ”Armadillo”.
A lexicon of seed person names is compiled from several
repositories which are then used to guide the information
extraction process. Heuristics are used to extract person in-
formation surrounding a name which appears within a given
web page.

Work by [18] has explored the application of Hidden Markov
Models to extract medical citations from a citation reposi-
tory by inputting a sequence of tokens and then outputting
the relevant labels for those tokens based on the HMM’s
predicted states: Title, Author, Affiliation, Abstract and
Reference. Prior to applying the HMMs, windows within
HTML documents are derived known as component zones,
or context windows, these zones within the HTML document
are considered for analysis in order to extract information
from. Similar work by [7] has applied HMMs to the task
of extracting citation information. Work within the field
of attribute extraction has placed emphasis on the need to
extract information describing a given person from within
web pages. For instance [9] uses extraction patterns (i.e.
regular expressions) defined for different person attributes
to match content within HTML documents. An approach
by [16] to extract person attributes from HTML documents
first identifies a list of candidate attributes within a given
web page using hand crafted regular expressions - these are
related to different individuals. All HTML markup is then
filtered out leaving the textual content of the documents.
Attributes which appear closest to a given person name are
then assigned to that name.

3. CONVERTING LEGACY DATA INTO
LINKED DATA

In order to convert legacy data into linked data we have im-
plemented a pipeline approach. Figure 1 shows the overview
of this approach which is divided into three stages:

• Triplification: the approach begins by taking as input
an RSS feed describing the publications by DCS mem-
bers and the DCS web site. Context windows are iden-
tified within the RSS feed - where each context win-
dow contains information about a single publication
- and in the HTML documents - where each context
window contains information about a single person.
Information is extracted from these context windows
and is then converted into triples, describing instances
of people and publications within the department.

• Coreference Resolution: SPARQL queries are processed
over the entire graph to discover coreferring entities:
e.g. the same people appearing in different web pages.

• Linking to the Web of Linked Data: the Web of Linked
Data Cloud is queried for coferring entities and related
information resources, and links are created from the
produced dataset.

Figure 1: Three staged approach to convert legacy data to linked data

Each of the stages of the approach contains various steps and
processes which are essential to the production of a linked
dataset. We will now present each of these stages in greater
detail, beginning with the triplication of legacy data.

4. TRIPLIFICATION OF LEGACY DATA
The DCS web site contains listings of members of the depart-
ment: staff, researchers and students, and their associated
information (name, email address, web address) provided
within HTML documents. Such documents lack metadata
descriptions which limits the applicability of automated pro-
cesses to parse and interpret the data. Therefore we require
some method to leverage legacy data which can then be con-
verted into triples to allow machine-processing, for instance
by associating a person with his/her name, email address,
etc. For publications we are confronted with a slightly differ-
ent problem. We are provided with an RSS feed1 containing
the publications within the department, this feed should be
well structured with declarative elements for each attribute
of a publication (i.e. title, authors, year, etc). Instead we
are returned the following:

<title>Interlinking Distributed Social Graphs</title>
<link>http://publications.dcs.shef.ac.uk/show.php?record=4161</link>
<description>

<![CDATA[Rowe, M. (2009). Interlinking Distributed Social Graphs.
In <i>Proceedings of Linked Data on the Web Workshop, WWW 2009,
Madrid, Spain. (2009)</i>. Madrid, Madrid, Spain.

Edited by Sarah Duffy on Tue, 08 Dec 2009 09:31:30 +0000.]]>

</description>
<pubDate>Mon, 07 Dec 2009 17:03:27 +0000</pubDate>
<author>Sarah Duffy <s.duffy@dcs.shef.ac.uk></author>

In the above XML the <title> element contains the title
of the paper, however other paper attributes are not placed
within suitable elements - i.e. using <author> element for
the author of the paper. Instead all the data which de-
scribes the paper is stored within the <descrption> element.
A technique is required which is able to extract informa-
tion from the <description> element which corresponds to
the relevant attributes of the paper, for instance by extract-
ing ”Interlinking Distributed Social Graphs” for the title at-
tribute.

Unlike publications however, extracting person information
from HTML documents requires the derivation of a context
windows which contain person attributes - this akin to being
provided with the content within the above <description>

1http://pubs.dcs.shef.ac.uk

element. We must identify such context windows within a
HTML document to enable the correct information to be
extracted. To address this problem we rely on the markup
used within HTML documents to segment disjoint content.
For instance in many web pages layout elements such as
<div> elements are used to contain information about a sin-
gle entity. Another <div> element is then used to contain
information about another entity. Using such elements pro-
vides the necessary means through which context windows
can be identified - through the use of layout elements within
a DOM - and information extraction techniques can be ap-
plied to leverage the legacy data. We now explain how we
generate context windows from HTML documents.

4.1 Generating Context Windows
To derive a set of context windows from a given HTML doc-
ument, we first tidy the HTML document into a parseable
form using Apache Maven’s HTML Parser2. HTML is often
messy and contains poorly structured markup where HTML
tags are opened and not closed. This reduces its ability to be
parsed where such techniques require a well-formed DOM.
Once tidied the DOM is used as input to Algorithm 1 as
follows: first a list of name patterns is loaded and applied to
the DOM model, for each pattern the list of DOM elements
which that pattern matches are collected (line 5). The pat-
tern list contains a set of regular expressions designed to de-
tect the appearance of a person name within a given body
of text (e.g. <first-name> <capitalised-word>+). Each
of the collected DOM elements is then verified as having not
been been processed before (line 6) - as different name pat-
terns may match the same person name at the same position
in the document. The trigger string is extracted from the
element (line 8) noting the person’s name that was matched
using the name pattern. The parent node type of the DOM
element (e) is then assessed to see if it is a hyperlink: it is
common for a person name to appear within a HTML docu-
ment as a hyperlinked element. If it is hyperlinked then the
grandparent of the element is considered as a possible area
from which the context window can be gathered. However
should the parent node of the element (e) not be hyperlinked
(line 12) then the parent is then passed onto the domManip
function for assessment together with the trigger string.

Algorithm 2 (domManip) takes the trigger node and a node
from within the DOM and manipulates the DOM structure
to derive a suitable DOM element from which the context
window should be derived. First the node type is checked

2http://htmlparser.sourceforge.net/

Algorithm 1 cwFind(dom) : Given the DOM of a HTML
document, returns a set of context windows
Input: dom
Output: Set of context windows C

1: N =person name patterns
2: C = ∅
3: visited = ∅
4: for each n ∈ N do
5: E = getElements(dom, n)
6: for each e ∈ E do
7: if e.startIndex /∈ visited then
8: trig = extract(e, n)
9: if e.parent.type ==< a > then
10: c = domManip(e.parent.content, e.parent.parent)
11: C = C ∪ c
12: else
13: c = domManip(trig, e.parent)
14: C = C ∪ c
15: end if
16: visited = visited ∪ e.startIndex
17: end if
18: end for
19: end for
20: return C

Algorithm 2 domManip(trig,node) : Given a trigger string
and the node which contains the trigger, derives the suitable
DOM element to extract the window from
Input: trig and node
Output: window

1: if node.type ==< td > then
2: window = extractWin(trig,node.parent.content.substring(trig))
3: else if node.type ==< style > then
4: domManip(trig, node.parent)
5: else
6: window = extractWin(trig,node.content.substring(trig))
7: end if

to see if it is a <td> element - denoting that the trigger
appeared within a table in the HTML document (line 1).
If this is the case then the trigger string is passed to ex-
tractWin together within the parent of the <td> element:
the <tr> element which <td> is a child of. If the node is a
style element (,<h1>,, etc) (line 3) then dom-
Manip is recursively called using the trigger and the parent
node. Such elements control the presentation and styling
of a HTML document but do not control or segment the
layout like <div>, or <td> elements do. If neither of
the above cases are true, and the node is a layout element
via the process of elimation (line 5) then the content of the
node and the trigger string is passed on to the window ex-
tractor. It is worth noting that the content of the nodes
which is passed onto extractWin contains HTML markup
along with textual content. Unlike exisiting work within the
attribute extraction state of the art, markup is maintained
as it provides clues which can aid the process of information
extraction (i.e. HTML tags acting as delimiters between
person attributes).

Algorithm 3 (extractWin) takes the trigger string (i.e. the
person name) and HTML content string and derives the con-
text window. First a mapping set is initialised and the list of
person name patterns is loaded (lines 1-2). The preamble of
the HTML content string contains the trigger string, there-
fore this is removed to enable the name patterns to match
the remaining content. Each pattern is applied to the con-
tent string (line 4), if a match occurs (line 5) then the name
pattern is added to the mapping along with the index within

Algorithm 3 extractWin(trig,content) : Given a trigger
string and a DOM element’s content, extracts the window
from the trigger onwards
Input: trig and content
Output: window

1: maps = ∅
2: N = person name patterns
3: remove(content, trig)
4: for each n ∈ N do
5: if match(content, n) then
6: maps = maps∪<n.startMatchIndex, n>
7: end if
8: end for
9: if |maps| > 0 then
10: order(maps)
11: <i, n> = maps1
12: return trig + content.substring(0, i)
13: else
14: return content
15: end if

the content string where the pattern match starts. Once all
patterns have been applied to the content string, the map-
pings, if there are any, are ordered by their start matching
points within the content string. The first mapping is then
chosen from the ordered set of mappings, given that this
provides the nearest point to the start of the content string
where a person name appears. The content string is then
removed of the content following the earlier match (line 12),
the trigger string is appended back on to the start and this
is returned as the context window. Should no mappings be
found (line 13) then the content string is returned as the
context window.

The derived context window from extractWin feeds back to
cwFind and populates the set of context window set for the
given HTML document. These algorithms for context win-
dow derivation provide a conservative strategy to identify
areas of a HTML document from which person information
can be extracted. It is conservative in the sense that it does
not look above certain DOM element types (i.e. <div>) in-
stead it relies on the logical segmentation of the document to
provide the necessary features which can be utilised to iden-
tify context windows. Applying this approach to a HTML
document containing the following markup would by trig-
gered by the person name Matthew Rowe, the algorithms
would traverse two nodes up from the element containing
the trigger string until a <div> element is found. The con-
text window is then returned as the substring of the con-
tent within the <div> element from the trigger string - the
person name Matthew Rowe onwards - until the end of the
<div> element’s content, returning the following:

<div>
Matthew Rowe</h4>

<p class="position">Ph.D. Student</p>

http://www.dcs.shef.ac.uk/ mrowe/

M.Rowe@dcs.shef.ac.uk

<p>Researching Identity Disambiguation and Web 2.0</p>
</div>

4.2 Extracting Legacy Data using HiddenMarkov
Models

Given a set of context windows derived from a HTML docu-
ment person information must now be extracted from the
windows. Person information consists of four attributes:
name, email, web page and location. The appearance and or-
der in which these attributes appear in the context window
can vary (e.g. (name,email,www) or (email,name,location).
Context windows for publications are also provided using
the content from all of the <description> elements within
the RSS publication feed. Publication information also con-
sists of four attributes: title, author, year and book. We use
the bookTitle attribute to define where the publication ap-
pears, this could be a thesis - in which case it would be the
university - or a journal paper - in which case it would be
the name of the journal publisher.

In order to extract both person and publication information
from their relevant context windows Hidden Markov Models
(HMMs) are used. HMMs provide a suitable solution to this
problem setting by taking as input a sequence of observa-
tions (e.g. tokens within a context window) and outputting
the most likely sequence of states where each state corre-
sponds to a piece of information to be extracted. HMMs use
Markov chains to work out the likelihood of moving from one
state to another (si → sj) and outputting symbol (σ when
in state sj). A HMM is described as hidden in that it is
given a known sequence observations with hidden states, it
must therefore label these hidden states which correspond to
person or publication attributes which are to be extracted.
A HMM consists of a set of States; S = {s1, s2, ..., sm},
a vocabulary of symbols; Σ = {σ1, σ2, ..., σn}, a transition
probability matrix; A (where aij = P (sj |si)), an omission
probability matrix; B (where biσ = P (σ|si)) and a start
probability vector (where π where πi = P (si|sstart)). These
parameters must be built, or estimated, from known infor-
mation, essentially training the HMM from previous context
windows to allow information to be extracted from future
context windows.

4.2.1 HMM States
The topology of the HMM defines what states are to be used
and how those states are connected together. States within
the HMM fall into two categories: major and minor states.
For person information extraction there are 4 major states
which constitute the four person attributes. 13 minor states
are defined in order to provide clues to the HMM and en-
hance the process of deriving the state sequence. Of those
13 minor states there are 2 pre-major states (pre email and
pre www), 10 separator states (e.g. between email and name)
and 1 after state which contains the symbols omitted at the
end of the window. Omissions made within the minor states
offer clues as to the order of the state sequence and what
information is to follow. For instance using the omission of
the token <a would indicate that a proceeding field might
contain an email address or a web address. There is also
a single start state in which the HMM begins. The start
probability vector (π) contains the transition probabilities
of moving from this state to another given state. Similar

Figure 2: Topology of HMM for publication infor-
mation extraction

to the person topology, the topology of the HMM for pub-
lication information extraction also contains 4 major states
corresponding to the four publication attributes. 3 Minor
states are used to separate the major states and a single
after state is included. Figure 2 shows the topology of the
HMM used for publication information extraction.

4.2.2 Parameter Estimations
Once the states have been decided for the information at-
tributes the remaining parameters of the HMM must be esti-
mated. We must train the HMM to detect what transitions
are more likely than others and to calculate the probabil-
ity of omitting a given symbol whilst in a given state. The
transition probability matrix A is built from labelled train-
ing data by counting the number of times a given state si

transits to state sj . This count is then normalised by the
total number of transitions from state si. Formally A is
populated as follows:

aij =
c(sj |si)P

s∈S c(s|si)

Similar to A, the omission probability matrix B is built from
labelled training data. Counts are made of how many times
a given symbol is observed in a given state, this count is
then normalised by the total number of symbols omitted in
that state. B is therefore defined as follows:

biσn =
σn|c(si)P

σ∈Σ c(σ|si)

The start probability vector is built from the training data
by counting how many times a given state is started in.
This is then normalised by the total number of start states
observed:

πi =
c(si|sstart)P

s∈S c(s|sstart)

4.2.3 Smoothing
When estimating the parameters of the HMM from labelled
training data it is likely that certain state-to-state transi-
tions, or omissions whilst in a given state are not observed.
The trained HMM, when applied to test data, may find pre-
viously unknown paths, or symbols omitted in states which
have previously not been witnessed. The model must be
able to deal with such possibilities by smoothing the tran-
sition and omission probabilities to cope with unseen ob-
servations and transitions within the training data. One
such smoothing technique is known as Naive Smoothing [7]
. Naive Smoothing functions by setting zero probabilities in
A and B to a very low constant of 10−7 . A and B are esti-
mated using normalised values such that

P|A|
j=1 aij = 1 and

P|B|
k=1 biσk = 1, therefore when smoothing the zero prob-

abilities in both A and B the non-zero probabilities must
also be adjusted to ensure that that the distributions hold.
Therefore all non-zero probabilities have the value of n

m10−7

subtracted from the current value where n is number of zero-
probability events and m is the number of non-zero proba-
bility events.

Another smoothing method using Additive Smoothing (Laplace
Smoothing) described in [6] increments all zero counts when
building A and B by 1. This ensures that the respective
transitions and omissions are then assigned a low probabil-
ity which is non-zero. It is worth noting that the use of
smoothing is only applicable if the training data does not
sufficiently cover possible transitions which are likely to ap-
pear and observations which are present in test data.

4.3 Vocabulary Dimension Reduction
One of the parameters of a HMM is its vocabulary of sym-
bols - where the term symbol is used to refer to a given
observation i.e. word, token, etc. This vocabulary contains
all the possible observations or omissions which might be
found within an input sequence. In [18] the vocabulary is
compiled from a large corpus of words which make up all
the possible symbols that could be observed. This works
well where the dictionary is a finite size, however in the
case of HTML markup leads to new combinations. To solve
this problem we control the dimension of the vocabulary
that only a fixed number of symbols are used. Dimension
control is performed using transformation functions as fol-
lows: a given input - i.e. the context window - is tokenized,
each token is then transformed into its respective symbols
using transformation functions. The transformed input se-
quence of symbols is then used to derive the correct state
sequence. The vocabulary contains 16 symbols, where each
symbol has a transformation function which matches the to-
ken to a given symbol. For instance the symbol First Name
(FN) is used to identify a person’s name. Symbols are also
used for different HTML tags such as an opening tag (e.g.
<a). Web data is noisy and contains a large amount of varia-
tion in content form. Controlling the vocabulary of symbols
allows previously unseen tokens to be handled appropriately.

4.4 Deriving Transition Paths
Given a tokenized context window which has been converted
into symbols, the Viterbi algorithm [5] is then used to cal-
culate the most probable state path through the window.
This path is found using A and B: given the sequence of ob-
servations the path is returned composed of the maximum
likelihood estimates of moving from one state to another and
then omitting a given symbol. The Viterbi algorithm uses
the learnt HMM, and its estimated parameters, as back-
ground knowledge of known transitions and omissions and
assesses the input sequence to find clues as to the order of
states. This allows consistencies in the layout and presen-
tation of person information to be utilised to extract in-
formation for future tasks. For instance, it is common for
a person to hyperlink their name with their web address,
learning such patterns allows for future similar information
extraction tasks to be recognised and the correct informa-
tion extracted.

4.5 Evaluation

The success of our triplification technique depends on its
ability to extract the maximum amount of person and publi-
cation information whilst ensuring that the extracted legacy
data is accurate and contains no errors - as this could be
detrimental to the linking of this data into the Web of Linked
Data. Therefore we evaluate our triplification approach us-
ing the evaluation measures precision and recall defined as
precision = |A ∩ B|/|B| and recall = |A ∩ B|/|A| where A
denotes the set of relevant tokens, and B denotes the set
of retrieved tokens. Precision measures the proportion of
tokens which were labelled correctly. Recall measures the
proportion of correct tokens which were found. These mea-
sures gauge the accuracy of the labels and the ability of
the technique to find person information within the HTML
document - as lower levels of recall indicate that person in-
formation is missed. Evaluation is therefore performed on
a per token basis for person information extraction within
a given HTML document and per token basis within the
publication feed for publication information extraction by
assessing the accuracy of the HMM in labelling tokens with
their respective major state labels and the ability of the tech-
nique to detect context windows. F-measure (referred to in
the results as F1) provides the harmonic mean of precision
and recall as follows:

f − measure = 2×precison×recall
precision+recall

The evaluation dataset was compiled by crawling the De-
partment of Computer Science web site3 - in a similar vein to
work by [3]. All internal pages within the web site were col-
lected, totaling 12,000 HTML documents, of this collection
3,500 documents were found to contain person information.
Context windows were derived for each of these documents
and 200 randomly selected context windows were used as
training data for the HMM. Each window is already tok-
enized, however for training each token is labeled with the
state in which it appears. The test data was also compiled
by randomly selecting 40 URLs from the dataset and their
respective context windows, therefore totalling 203 context
windows. A gold standard was then created for these win-
dows by manually labelling the tokens within their respec-
tive states. Each URL was also manually analysed to find
context windows which were missed by the context window
derivation algorithms, these were then added to the gold
standard. We performed the same setup for publications
by generating 200 tokenised context windows - using con-
tent from <description> elements in the publication RSS
feed - and labelling each of the tokens in each window with
its respective states for training and choosing another 200
windows randomly for testing.

4.5.1 Results
As the results from Table 1 and Table 2 show Naive Smooth-
ing achieves, on average, higher f-measure levels with respect
to the alternative smoothing method. Additive Smoothing
yields poorer scores, particularly for labelling web addresses
and locations. Both smoothing techniques perform poorly
in terms of recall when extracting location information. In
terms of publication information extraction the results are

3http://www.dcs.shef.ac.uk

Table 1: Accuracy levels of extracting person infor-
mation using Hidden Markov Models with different
smoothing methods

Naive Smoothing Additive Smoothing
Attribute P R F1 P R F1

Name 0.903 0.875 0.889 0.928 0.703 0.8
Email 1 0.867 0.928 0.578 0.688 0.628
WWW 0.849 0.833 0.841 0.714 0.714 0.714

Location 0.888 0.444 0.592 0.421 0.211 0.281
Average 0.910 0.754 0.825 0.66 0.579 0.616

Table 2: Accuracy levels of extracting publication
information using Hidden Markov Models with dif-
ferent smoothing methods

Naive Smoothing Additive Smoothing
Attribute P R F1 P R F1

Title 0.941 0.698 0.801 0.901 0.589 0.712
Year 1 0.716 0.835 1.000 0.678 0.808

Author 0.952 0.717 0.818 0.934 0.687 0.792
Book Title 0.982 0.652 0.783 0.956 0.500 0.657
Average 0.969 0.696 0.810 0.948 0.614 0.745

similar to the performance when applying HMMs for per-
son information extraction. Naive smoothing yields higher
f-measure scores overall and almost perfect precision - indi-
cating that the extracted information rarely contains mis-
takes. However particularly for the paper title and the book
title several tokens are missed leading to incomplete titles.
This is something which must be addressed in future work as
the error will scale up to become detrimental to data quality.

4.6 Building RDF Models from Legacy Data
Using HMMs together with Naive Smoothing we build an
RDF dataset describing all instances of people and publi-
cations within the department. This dataset provides the
source dataset from which we build our linked dataset for
deployment. We apply the above techniques to the en-
tire dataset collected from the DCS web site in order to
build metadata models describing person information found
within each web document. We also apply the technique
to build RDF models describing publications within the de-
partment. In each case we use temporary URIs to provide
unique RDF instances constructed from the extracted legacy
data. We use a namespace to identify the RDF instance as
denoting a person http://data.dcs.shef.ac.uk/person/
and append an incremented integer to form a new URI
for a given person. For each person found within a given
HTML document we create instances of foaf:Person and
assign their name to the instance using foaf:name, hashed
emailed address using foaf:sha1 sum and homepage using
foaf:homepage. We associate the person instance to the
web page within the department’s web site on which the
instance appeared using foaf:topic. An example instance of
foaf:Person is as follows (using Notation 3 syntax).

<http://data.dcs.shef.ac.uk/person/12025>
rdf:type foaf:Person ;
foaf:name "Matthew Rowe" .

<http://www.dcs.shef.ac.uk/~mrowe/publications.html>
foaf:topic <http://data.dcs.shef.ac.uk/person/12025>

For publications we model extracted information using the
Bibtex ontology4 by creating an instance of bib:Entry for
each publication instance. We use a temporary URI for
each publication instance by taking the publication names-
pace http://data.dcs.shef.ac.uk/paper/ and appending
an incremented integer for each each new publication. We
then assign the relevant attributes to the instance using
concepts from the Bibtex ontology. For the title we use
bib:title, for the year we use bib:hasYear and for the book
title we use bib:hasBookTitle. For each paper author we cre-
ate a blank node typed as an instance of foaf:Person and
assign the author name to the instance using foaf:name and
associate this instance with the publication instance using
foaf:maker. Referring back to the example from the begin-
ning of this section, the RSS feed provided by the publication
base contained publication information - containing all four
attributes - within a single <description> element. This
legacy data, once extracted and converted into triples, is
provided as follows (again using Notation 3 syntax):

<http://data.dcs.shef.ac.uk/paper/239>
rdf:type bib:Entry ;
bib:title "Interlinking Distributed Social Graphs." ;
bib:hasYear "2009" ;
bib:hasBookTitle "Proceedings of Linked Data on the

Web Workshop, WWW , Madrid, Spain." ;
foaf:maker _:a1 .

_:a1
foaf:name "Matthew Rowe"

5. COREFERENCE RESOLUTION
Following conversion of the DCS web site and publication
database we are provided with an RDF dataset containing
17896 foaf:Person instances and 1088 bib:Entry instances.
Using this dataset we must discover coreferring instances
such as equivalent people appearing in separate web pages
and identify publications which people have published. This
stage in the approach starts the process of compiling the
linked dataset which will be deployed for consumption. There-
fore we perform coreference resolution to identify equivalent
instances in the dataset and fuse data together - this will
provide rich instance descriptions when a resource is looked
up in our linked dataset.

5.1 Building Research Groups
Our produced linked dataset is intended to contain informa-
tion about research groups and their members and publica-
tions. Therefore we generate an instance of foaf:Group for
each research group and assign the group a minted URI using
the group namespace http://data.dcs.shef.ac.uk/group
and appending an abbreviation of the group name (e.g. nlp
for the Natural Language Processing Group). We then as-
sign a name to the group using foaf:name and the URL of
the group web page using foaf:workplaceHomepage. This
produces the following:

<http://data.dcs.shef.ac.uk/group/oak>
rdf:type foaf:Group ;
foaf:name "Organisations, Information and Knowledge

Group" ;
foaf:workplaceHomepage <http://oak.dcs.shef.ac.uk>

4http://zeitkunst.org/bibtex/0.1/bibtex.owl#

Once we have constructed all of the group instances we then
query our source dataset for all the people who appear on
each of the group personnel pages. This provides us with the
members of the DCS whose information is going to the com-
piles and deployed as linked data. This step in the approach
acts as seeding the forthcoming coreference resolution pro-
cesses by compiling a set of members. It worth noting how-
ever that in doing so we are only considering a subset of
the entire collection of foaf:Person instances. We plan to
analyse this data in future work, however for now we are
concerned with producing linked data describing the DCS.

5.2 Person Disambiguation
We are provided with a set of people who are members of
the DCS, who either work or study there. We perform per-
son disambiguation to identify other instances of foaf:Person
in separate web documents which are in fact the same peo-
ple as the DCS members. Our first person disambiguation
method uses Instance Smushing [13] to discover equivalent
instances. This technique works by matching resources as-
sociated with disparate RDF instances where the resources
are associated with the instances using properties which are
defined as owl:inverseFunctionalProperty. An example of
instance smushing is the identification of equivalent person
instances using the email address of the person. In essence
Instance Smushing uses the declarative characteristics of
such properties to detect coreference. We smush instances
of foaf:Person which appear on research group personnel
pages using the following SPARQL rule for foaf:homepage
property:

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
CONSTRUCT {

?x owl:sameAs ?y .
?x foaf:page ?p

}
WHERE {

<http://oak.dcs.shef.ac.uk/people> foaf:topic ?x .
?x foaf:homepage ?h .
?p foaf:topic ?y
?y foaf:homepage ?h
FILTER (<http://oak.dcs.shef.ac.uk/people> != ?p)

}

The triple within the CONSTRUCT clause infers an owl:sameAs
relation between a member of the oak group and another
person instance on a separate web page, and infers that the
page cites the group member - expressed using foaf:page.

Our second person disambiguation technique employs per-
son co-occurence to identify coreferring instances of foaf:Person.
We assume that if a group member appears on a web page
with a coworker then that page will refer to them - this is a
basic intuition used throughout person disambiguation ap-
proaches. Therefore we define a SPARQL rule to infer the
same triples as the previous rule but this time modifying the
graph pattern within the WHERE clause to match the name
of a member of the OAK group - listed on the group’s per-
sonnel page - and the name of a colleague on a separate
page.

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX owl:<http://www.w3.org/2002/07/owl#>

CONSTRUCT {
?x owl:sameAs ?y .
?x foaf:page ?p

}
WHERE {

<http://oak.dcs.shef.ac.uk/people> foaf:topic ?x .
<http://oak.dcs.shef.ac.uk/people> foaf:topic ?y .
?p foaf:topic ?z .
?p foaf:topic ?u .
?x foaf:name ?n .
?y foaf:name ?m .
?z foaf:name ?n .
?u foaf:name ?m .
FILTER (<http://oak.dcs.shef.ac.uk/people> != ?p)

}

Using the above rules identifies web pages within the dcs
which cite the group members and their equivalent instances
from those pages. New instances of foaf:Person are con-
structed for each member of the research groups within the
department. For each group member we take the instances
of foaf:Person and assign the information from the instance
description to the new foaf:Person instance. This fuses the
data from separate instances to provide a richer description.
Also for each group member we assign each page where an
equivalent instance was found and relate this page to the
new foaf:Person instance using foaf:page. When the instance
is dereferenced this will provide links to all the web pages
which cites the person. For each group member we create
a new minted URI according to ”Cool URIs for the Seman-
tic Web”5. We use the same person namespace as for the
temporary URIs but with the person name as it appears on
the group personnel page (with titles removed) and append
this to the namespace to produce a URI for the DCS mem-
ber (e.g. <http://data.dcs.shef.ac.uk/person/Matthew-
Rowe>).

5.3 Assigning People to Publications
Our linked dataset now contains instances of foaf:Group and
foaf:Person describing research groups and their members.
We must now identify publications which have been writ-
ten by the group members. We implement a basic strategy
of name matching using an abbreviated form of the names
of the group members. For instance for the name ”Matthew
Rowe”we break down the name into several citation formats:
”M Rowe”, ”Rowe M”, ”M. Rowe”. The publication database
has no single strategy for naming and therefore several dif-
ferent formats must be accounted for. It is worth noting the
imprecision such a strategy would lead to if it was applied
when interlinking data. However in this context it is appli-
cable to use such a technique given the localised context of
the publication database - as it only stores publications by
members of the department. Using the above example we
formulate queries based on several name abbreviations in or-
der to match a group member with the publications he/she
has written. An example rule is as follows:

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
CONSTRUCT {

<http://data.dcs.shef.ac.uk/person/Matthew-Rowe>
foaf:made ?p

}
WHERE {

?p rdf:type bib:Entry .

5http://www.w3.org/TR/2007/WD-cooluris-
20071217/#cooluris

?p foaf:maker ?x .
?x foaf:name ?n
FILTER regex(?n, "M.*Rowe", "i")

}

This rule finds an instance of bib:Entry which has an author
whose name matches the above regular expression. The in-
ferred triple then constructs a relation between the group
member and the publication using foaf:made - indicating
that the paper was produced by the person. For each paper
that is found to have been authored by a group member we
place the paper and its description within the linked dataset.
We maintain the same URI as before (containing the paper
namespace and the increment of the paper count).

Figure 3 shows a snippet of the compiled dataset. By enrich-
ing data with formal semantics - where the data is leveraged
from heterogeneous sources - we are provided with a rich
interpretation of legacy data. This allows SPARQL queries
to be performed over the dataset in order to extract knowl-
edge - this was previously limited without a large amount
of manual processing. For instance we can ask for all the
groups have have worked together on papers and what were
the papers called.

6. LINKINGTOTHEWEBOFLINKEDDATA
At this stage in our approach we have extracted legacy
data as triples and have built an interlinked dataset describ-
ing people within the DCS, their publications and the re-
search groups they are members of. This dataset must now
be linked into the Web of Data to provide relations with
equivalent resources and related information in distributed
datasets. The advantage of this - from the perspective of
members of the DCS - is that once equivalent person in-
stances are found within external bibliography databases
then all the papers written by that person, and do not ap-
pear on the DCS publication database, will be provided by
looking up the URI of the DCS member.

According to [8] author disambiguation is one of the com-
mon problems faced by the linked data community. In cer-
tain cases, wrongly created owl:sameAs links result in the
incorrect collection of publications being returned when an
author URI is looked up. For now we implement a conserva-
tion strategy to link members of the DCS with publications
which they have authored which are contained within exter-
nal datasets. We use a similar person co-occurence strategy
as when detecting equivalent foaf:Person instances previ-
ously. We assume that a person will author a paper with the
same people that they work with. We construct a SPARQL
rules which uses the notion of a networked graph [12] to
query the DBLP linked dataset6. The rule works as follows:

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX dc:<http://purl.org/dc/terms/>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
CONSTRUCT {

?q foaf:made ?paper .
?p foaf:made ?paper .
?q owl:sameAs ?x .
?p owl:sameAs ?y

}
WHERE {

6http://www4.wiwiss.fu-berlin.de/dblp/

?group foaf:member ?q .
?group foaf:member ?p .
?q foaf:name ?n .
?p foaf:name ?c .
GRAPH <http://www4.wiwiss.fu-berlin.de/dblp/>
{

?paper dc:creator ?x .
?x foaf:name ?n .
?paper dc:creator ?y .
?y foaf:name ?c .

}
FILTER (?p != ?q)

}

For each group within the linked dataset the above SPARQL
rule gathers all the group members and checks their names
against the networked graph for publications where those
people have worked together. The URI of the paper which
matches the query is then assigned to the group members
in using the foaf:made relation. The authors of the paper
within the DBLP dataset are also detected as referring to
the group members and are associated to those foaf:Person
instances using owl:sameAs. Using such a query produces
the following relations.

<http://data.dcs.shef.ac.uk/person/Fabio-Ciravegna>
owl:sameAs

<http://www4.wiwiss.fu-berlin.de/dblp/resource/person/169384> ;
foaf:made

<http://www4.wiwiss.fu-berlin.de/dblp/resource/record/conf/icml
/IresonCCFKL05>

foaf:made
<http://www4.wiwiss.fu-berlin.de/dblp/resource/record/conf/ijcai
/BrewsterCW01>

In order to expose linked data we have deployed our dataset
using static RDF files according to Recipe 1 from ”How to
Publish Linked Data”7 and Recipe 2 for slash namespaces
from the ”Best Practices for Publishing RDF vocabularies”8.
This serves our purpose as URIs are dereferenceable in our
published data and will allow this deployment to be up-
graded to more advanced setups, such as Drupal, in the near
future without the URIs returning a 404 response.

7. CONCLUSIONS
This paper has presented an approach currently in use to
convert legacy data to linked data. The paper places em-
phasis on the first stage of the process triplification of legacy
data as this has been the most thoroughly investigated por-
tion of the work. We believe that the results from the evalu-
ation demonstrate the effectiveness of using trained Hidden
Markov Models to extract legacy data from HTML docu-
ments and RSS feeds. Although we have used such tech-
niques to extract person information, the approach could be
applied to other domains in which legacy data is locked away
within HTML documents and devoid of machine-processable
markup. In such cases the HMMs would be trained for the
specific information which is to be extracted. The triplifica-
tion and coreference resolution stages of the approach have
provided a stable testbed on which we plan to explore sta-
tistical methods for interlinking our dataset into the Web of
Linked Data. Our future work will investigate such methods
in order to contribute to the Linked Data community. Once

7http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
8http://www.w3.org/TR/swbp-vocab-pub/

Figure 3: A snippet of the interlinked dataset following coreference resolution

we have linked our linked dataset to additional datasets then
we plan also provide VoiD descriptions [1] of those links to
enable easier consumption of the data. At present our top
level components in the produced dataset are the research
groups. We plan to use this project as the blueprint for
producing linked data from all departments and faculties
in the university, described using the Academic Institution
Internal Structure Ontology9.

8. REFERENCES
[1] K. Alexander, R. Cyganiak, M. Hausenblas, and

J. Zhao. Describing Linked Datasets - On the Design
and Usage of voiD, the ’Vocabulary of Interlinked
Datasets’. In WWW 2009 Workshop: Linked Data on
the Web (LDOW2009), Madrid, Spain, 2009.

[2] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and
D. Aumüller. Triplify light-weight linked data
publication from relational databases. In 18th
International World Wide Web Conference
(WWW2009), April 2009.

[3] F. Ciravegna, S. Chapman, A. Dingli, and Y. Wilks.
Learning to harvest information for the semantic web.
In Proceedings of the 1st European Semantic Web
Symposium (ESWS-2004), May 2004.

[4] P. Coetzee, T. Heath, and E. Motta. Sparqplug:
Generating linked data from legacy html, sparql and
the dom. In Linked Data on the Web (LDOW2008),
2008.

[5] G. D. Forney. The viterbi algorithm. Proceedings of
the IEEE, 61(3):268–278, 1973.

[6] D. Freitag and A. K. Mccallum. Information
extraction with hmms and shrinkage. In In Proceedings
of the AAAI-99 Workshop on Machine Learning for
Information Extraction, pages 31–36, 1999.

[7] E. Hetzner. A simple method for citation metadata
extraction using hidden markov models. In JCDL ’08:
Proceedings of the 8th ACM/IEEE-CS joint conference
on Digital libraries, pages 280–284, New York, NY,
USA, 2008. ACM.

[8] A. Jaffri, H. Glaser, and I. Millard. Uri
disambiguation in the context of linked data. In
Linked Data on the Web (LDOW2008), 2008.

[9] M. Lan, Y. Z. Zhang, Y. Lu, J. Su, and C. L. Tan.
Which who are they? people attribute extraction and
disambiguation in web search results. In 2nd Web

9http://vocab.org/aiiso/schema#

People Search Evaluation Workshop (WePS 2009),
18th WWW Conference, 2009.

[10] K. Möller, T. Heath, S. Handschuh, and J. Domingue.
Recipes for semantic web dog food - the eswc and iswc
metadata projects. In 6th International and 2nd Asian
Semantic Web Conference (ISWC2007+ASWC2007),
pages 795–808, November 2007.

[11] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. Technical report, W3C, 2006.

[12] S. Schenk and S. Staab. Networked graphs: a
declarative mechanism for sparql rules, sparql views
and rdf data integration on the web. In WWW ’08:
Proceeding of the 17th international conference on
World Wide Web, pages 585–594, New York, NY,
USA, 2008. ACM.

[13] L. Shi, D. Berrueta, S. Fernandez, L. Polo, and
S. Ferna?dez. Smushing rdf instances: are alice and
bob the same open source developer? In ISWC2008
workshop on Personal Identification and
Collaborations: Knowledge Mediation and Extraction
(PICKME 2008), October 2008.

[14] D. Thamvijit, H. Chanlekha, C. Sirigayon,
T. Permpool, and A. Kawtrakul. Person information
extraction from the web. In 6th Symposium on 6th
Symposium of Natural Language Processing, 2005.

[15] X. Wan, J. Gao, M. Li, and B. Ding. Person resolution
in person search results: Webhawk. In CIKM ’05:
Proceedings of the 14th ACM international conference
on Information and knowledge management, pages
163–170, New York, NY, USA, 2005. ACM.

[16] K. Watanabe, D. Bollegala, Y. Matsuo, and
M. Ishizuka. A two-step approach to extracting
attributes for people on the web. In 2nd Web People
Search Evaluation Workshop (WePS 2009), 18th
WWW Conference, 2009.

[17] B. Zhou, W. Liu, Y. Yang, W. Wang, and M. Zhang.
Effective metadata extraction from irregularly
structured web content. Technical report, HP
Laboratories, 2008.

[18] J. Zou, D. Le, and G. R. Thoma. Structure and
content analysis for html medical articles: a hidden
markov model approach. In DocEng ’07: Proceedings
of the 2007 ACM symposium on Document
engineering, pages 199–201, New York, NY, USA,
2007. ACM.

