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ABSTRACT
Schema-level heterogeneity represents an obstacle for auto-
mated discovery of coreference resolution links between in-
dividuals. Although there is a multitude of existing schema
matching solutions, the Linked Data environment differs
from the standard scenario assumed by these tools. In par-
ticular, large volumes of data are available, and repositories
are connected into a graph by instance-level mappings. In
this paper we describe how these features can be utilised to
produce schema-level mappings which facilitate the instance
coreference resolution process. Initial experiments applying
this approach to public datasets have produced encouraging
results.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous;
D.2 [Software]: Software Engineering
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1. INTRODUCTION
The Web of Data is constantly growing [1], and the coref-

erence links between data instances stored in different repos-
itories represent a major added value of the Linked Data
approach. These links connect individuals which refer to
the same real-world entities using different URIs. Based
on these links, it is possible to combine bits of informa-
tion about the same real-world entity which were originally
stored in several physical locations. Because of the large
amount of data, it is not possible to generate these links
manually, and automatic coreference resolution tools are
used. However, the usage of these tools is complicated by se-
mantic heterogeneity between repositories: although reusing
common terminologies (e.g., FOAF1 or Dublin Core2) is en-
couraged [1], existing repositories often use their own schemas.
If repositories use different ontological schemas, it is not
clear which sets of individuals should be compared by the
coreference resolution tool, and which properties can be used

1http://xmlns.com/foaf/0.1/
2http://www.purl.org/dc/
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to measure similarity between individuals. Thus, as a pre-
processing step for generating coreference links between in-
dividuals, it is desirable to align schema terms in an auto-
mated way as well.

Although the schema matching task (discovering map-
pings betweem classes and properties) is an established re-
search topic both in the database and the Semantic Web
communities [4], the Linked Data environment has its spe-
cific features which are not utilised by existing methods and
can be exploited to support the schema matching process.
In particular:

• It is possible to consider several interlinked datasets
in combination instead of comparing each pair in iso-
lation and to involve information contained in third-
party datasets as background knowledge to support
matching.

• Large volumes of instance data are available, which
makes it possible to learn and exploit data patterns
not represented explicitly in the ontologies.

• Actual relations between concepts and properties are
fuzzy and cannot be adequately captured using de-
scription logic terms: i.e., we are dealing with relations
like “class overlap” or “relation overlap” rather than
strict equivalence and subsumption.

In this paper we describe how these features can be utilised
to perform schema-level matching between Linked Data repos-
itories and, in turn, to facilitate instance coreference reso-
lution. We have implemented this approach and obtained
encouraging results in the test experiments.

2. RELATED WORK
The problem of instance-level coreference resolution is well-

recognised in the Linked Data community [1]. Although in
some key property values (inverse functional properties) can
be compared [6], this is not sufficient in general case. In or-
der to deal with it, the methods developed in the database
community are commonly adopted, in particular, determin-
ing equivalence based on aggregated attribute-based similar-
ity [5] and the use of string similarity to compare property
values [3]. For example, these principles are implemented
in SILK [9]. However, applying such a tool to a new pair
of datasets requires significant user effort: the user has to
specify which sets of individuals from two datasets are po-
tentially overlapping, which attributes should be compared,



and which similarity metrics should be used for comparison.
If afterwards one of the datasets has to be connected to an-
other repository which uses a different schema, the user has
to redefine these settings.

To minimise this user effort, it is currently a common
practice that a newly published repository is only linked to
one or a few “hub” repositories. DBPedia is the most pop-
ular generic “hub” repository, while there are also several
domain-specific ones (e.g., Geonames for geographical data
and Musicbrainz for music-related information). Then, in
order to obtain complete information about a certain entity
we need to compute a transitive closure of coreference links
and gather all URIs used to represent this entity in differ-
ent datasets. These transitive closures can be maintained
in a centralised way [7]3 and the mutual impact of atomic
mappings can be analysed [2]. However, this approach often
leads to the loss of information. For example, it can happen
that several datasets connected to the same “hub” reposi-
tory mention the same entity under different URIs. If the
“hub” repository itself does not mention this entity, then the
coreference links between these URIs cannot be established.
It is also possible that one of the intermediate coreference
links is omitted due to an error of the coreference resolution
tool.

In order to discover such missing links, the coreference
resolution procedure has to be directly applied to the corre-
sponding subsets of datasets which are linked via one or sev-
eral intermediate repositories. To identify such correspond-
ing subsets and comparable properties, the above-listed fea-
tures of the Linked Data environment can be exploited. Be-
cause large volumes of data and partial sets of equivalence
links are available, it is possible to apply the instance-based
ontology matching techniques [4]. This is implemented in
our approach.

3. USING BACKGROUND DATA FOR ON-
TOLOGY MATCHING

Our approach is a further extension of the work presented
in [?]. Its main idea is to use a pre-existing set of instance-
level links for two purposes:

• Infer schema-level relations between concepts and prop-
erties of two different repositories. For example, by
analysing the LinkedMDB repository4, which describes
movies from the IMDB database, and DBPedia5, which
describes Wikipedia entries, together with their incom-
ing and outgoing instance-level links, we can establish
relations between their classes movie:music contributor
and dbpedia:Artist, and between properties movie:actor
and dbpedia:starring. These schema-level mappings
can afterwards be utilised by an instance-level corefer-
ence resolution tool.

• Infer data patterns which hold for instances of these
concepts and properties. For example, it is possible to
infer that identical movies usually have the same re-
lease year and overlapping sets of actors. Later, these
patterns can be used to highlight the existing identity
links which violate these patterns and are likely to be
spurious.

3http://www.sameas.org, http://www.rkbexplorer.com
4http://data.linkedmdb.org/
5http://dbpedia.org

Figure 1: LinkedMDB and DBPedia: exploit-
ing instance-level coreference links with third-party
datasets. Solid arrows show existing owl:sameAs
(=) and movie:relatedBook links. Dashed arrows
connect sets containing potentially omitted links.

In the following subsections we will describe these two parts
of our approach in more detail using illustrative examples
from actual Linked Data repositories.

3.1 Inferring schema-level mappings
In order to produce schema-level mappings between two

data repositories based on existing instance-level links, the
Linked Data environment allows two types of background
knowledge to be utilised:

• Data-level evidence. This includes instance coreference
links between the two repositories being analysed and
third-party repositories. These links can be aggregated
to indicate potentially overlapping sets of individuals
in two original datasets.

• Schema-level evidence. This includes ontological schemas
used in third-party repositories. Schema-level evidence
can be utilised when (a) one dataset uses two different
vocabularies which model the domain with different
levels of detail or (b) the same schema is reused by
several repositories. This schema-level evidence can
provide additional insights into the meaning of con-
cepts and properties based on their usage.

3.1.1 Data-level evidence
Let us consider an example shown in Fig. 1. The Linked-

MDB repository contains data about movies structured us-
ing a special Movie ontology. Many of its individuals are
also mentioned in DBPedia under different URIs. Some of
these coreferent individuals, in particular, those belonging to
classes movie:film and movie:actor, are explicitly linked to
their counterparts in DBPedia by automatically produced
owl:sameAs relations. However, for individuals of some
classes direct links are not available. For instance, there
are no direct links between individuals of the class movie:
music contributor representing composers, whose music was
used in movies, and corresponding DBPedia resources. Then,
there are relations of the type movie:relatedBook from movies



to related books in RDF Book Mashup6, but not to books
mentioned in DBPedia. Partially, such mappings can be
obtained by computing a transitive closure for individuals
connected by coreference links via intermediate repositories
(MusicBrainz7 for composers and Book Mashup for books).
In this way, many links are not discovered because of omis-
sions of an intermediate link in a chain (e.g., 32% of movie:
music contributor instances were not connected to corre-
sponding DBPedia instances). Such links can be discov-
ered by applying an instance coreference resolution tool (like
SILK [9] or KnoFuss [8]) directly to corresponding subsets
of LinkedMDB and DBPedia. However, in order to apply
them, it is necessary to separate these corresponding sub-
sets from irrelevant data, in other words, to specify map-
pings between classes which are likely to contain identical
individuals.

In this situation, we can use our schema matching ap-
proach which includes the following steps:

1. Combining identical individuals into clusters. At this
stage all identical individuals from a set of datasets are com-
bined into clusters based on the transitive closure of existing
owl:sameAs relations.

2. Establishing relations between clusters and schema terms.
For example, if one individual in the cluster belongs to the
class dbpedia:Artist, then we say that the whole cluster be-
longs to this class. The same applies for properties of each
individual in the cluster.

3. Inferring mappings between schema terms using in-
stance set similarity. Instead of strict owl:equivalentClass or
owl:subClassOf relations we produce fuzzy relations #over-
lapsWith. Formally this relation is similar to the umbel:
isAligned property defined in the Umbel vocabulary8 and
states that two classes share a subset of their individuals.
This relation has a quantitative measure (a number be-
tween 0 and 1) which is used to distinguish between strongly
correlated classes (like dbpedia:Actor and movie:Actor) and
merely non-disjoint ones (like movie:actor and dbpedia: Foot-
ballPlayer, which share several instances such as “Vinnie
Jones”). This measure is computed as the value of the over-
lap coefficient:

sim(A, B) = overlap(c(A), c(B)) =
|c(A) ∩ c(B)|

min(|c(A)|, |c(B)|) ,

where c(A) and c(B) - sets of instance clusters assigned to
classes A and B respectively. The strength of a relation
between properties is computed as

sim(r1, r2) =
|c(X)|
|c(Y )| ,

where c(X) - a set of clusters which have equivalent values
for properties r1 and r2 and c(Y) - a set of all clusters which
have values for both properties r1 and r2.

Resulting mappings are filtered by comparing the strength
of each relation with a pre-defined threshold, and weak map-
pings are removed from the resulting set. The resulting
set of mappings is passed to the coreference resolution tool
(in our case, KnoFuss) which compares instances belonging
to mapped classes and generates instance coreference map-
pings.

6http://www4.wiwiss.fu-berlin.de/bizer/bookmashup/
7http://dbtune.org/musicbrainz/
8http://www.umbel.org/technical documentation.html

Figure 2: DBPedia and DBLP: exploiting schema-
level links with third-party datasets. Solid arrows
show existing owl:sameAs (=) and rdf:type links.
Dashed arrows represent discovered schema rela-
tions. The system identifies the subset of dbpe-
dia:Person instances, which overlaps with DBLP
foaf:Person instances, as a union of classes defined
in Yago.

3.1.2 Schema-level evidence
In the example shown in Fig. 1 the main source of back-

ground knowledge are existing instance-level coreference links
with third-party repositories (MusicBrainz and Book Mashup).
One case when schema-level evidence can be utilised is when
instances in a dataset are linked to a schema used by a third-
party repository. For example, in Fig. 2 both DBPedia and
DBLP contain individuals representing the same computer
scientists. However, only a small proportion of these indi-
viduals is explicitly linked by owl:sameAs mappings (196
links). Applying automatic coreference resolution, which
could derive more mappings, is complicated by two issues:

• Datasets do not contain overlapping properties for their
individuals apart from personal names.

• Individuals which belong to overlapping subsets are
not distinguished from others: in DBLP all paper au-
thors belong to the foaf:Person class, while in DBPe-
dia the majority of computer scientists are assigned to
a generic class dbpedia:Person and not distinguished
from other people.

Using name similarity to produce mappings between in-
stances is likely to produce many false positive links due
to ambiguity of personal names. The source of the schema-
level evidence which can resolve this issue is the Yago repos-
itory9. The Yago ontology is based on Wikipedia cate-
gories and provides a more detailed hierarchy of classes than
the DBPedia ontology. Using the procedure described in
section 3.1.1, we can approximate the boundaries of the
DBPedia subset which overlaps with DBLP. The algorithm
returns a set of mappings between the Yago classes and
the foaf:Person class in DBLP, e.g., between foaf:Person
and yago:MicrosoftEmployees and between foaf:Person and
yago:BritishComputerScientists. Having these mappings, the

9http://www.mpi-inf.mpg.de/yago-naga/yago/



Figure 3: Gutenberg/DBPedia/Book Mashup:
Aligning relations dc:creator and dbpedia:author
which have strongly overlapping domains
(Book Mashup/DBPedia) and ranges (Guten-
berg/DBPedia)

instance-level coreference resolution can be applied only to
instances of mapped classes and produce results with higher
accuracy.

Another scenario where schema-level evidence can be utilised
is the case when one ontology is reused in several reposi-
tories. Then data from all these repositories can be used
to reason about the usage patterns of the terms of this
ontology. For example, in Fig. 3 three datasets (Guten-
berg project10, RDF Book Mashup, and DBPedia) describe
books and their authors, and two of them (Book Mashup
and Gutenberg) use the Dublin Core vocabulary. There ex-
ist a set of owl:sameAs links between books in RDF Book
Mashup and DBPedia, and a set of links between authors
in DBPedia and Gutenberg project. However, there are no
links between Book Mashup and DBPedia authors or be-
tween Gutenberg and DBPedia books. Again, direct classes
foaf:Person and dbpedia:Person are too generic to provide
useful input for the coreference resolution stage: comparing
all Person individuals in DBPedia and RDF Book Mashup
is likely to produce many spurious mappings between people
having the same names. But, using evidence from all three
repositories, it is possible to establish a relation between the
properties dc:creator and dbpedia:author. Based on the set
of co-referent books from DBPedia and Book Mashup we
can infer that these properties have the same domain, and
based on the mappings between authors we can infer that
they have the same range. Given that no property in DB-
Pedia is a stronger candidate for the matching relation, we
can produce the schema-level mapping between properties
dc:creator and dbpedia:author. After that we can establish
missing relations from Gutenberg to DBPedia (books) and
from Book Mashup to DBPedia (authors) by comparing in-
dividuals which are connected via these properties to already
mapped ones.

When processing schema-level evidence, it is important to
bear in mind that the same ontological terms can be used
in different repositories with different interpretation: e.g.,
in our example, in DBLP a generic foaf:Person class in fact
refers only to people related to computer science.

3.2 Inferring data patterns and refining the
set of existing mappings

It is sometimes the case that the existing set of owl:sameAs
mappings contains spurious mappings connecting distinct
individuals: it is hard to avoid errors when an automatic
coreference resolution tool applies some fuzzy similarity met-
rics to process large amounts of data. If the resulting set of
mappings is large, it is not feasible to check their correct-

10http://www4.wiwiss.fu-berlin.de/gutendata/

ness manually. However, by analyzing the data patterns
it is possible to select subsets of mappings which are more
likely to contain spurious mappings and highlight them. For
instance, in the example shown in Fig. 1, we established
the relations between pairs of properties {movie:actor ; dbpe-
dia:starring} (sim = 0.98) and {movie:initial release date;
dbpedia:releasedDate} (sim = 0.96). In other words, most
equivalent movies have the same release date and are re-
lated to overlapping sets of actors. Thus, we can hypothesise
that the mappings between individuals representing movies
where these patterns do not hold are more likely to be spu-
rious.

Currently, our algorithm can infer two kinds of patterns
corresponding to the functionality and inverse functionality
property restrictions:

• Property value equivalence. This states that for a pair
of aligned properties {r1, r2}, equivalent individuals
I1 ≡ I2 should have equivalent values: r1(I1, x), r2(I2, y),
x ≡ y

• Property subject equivalence. This states that for a
pair of aligned properties {r1, r2}, if the objects of
these properties are equivalent individuals I1 ≡ I2,
the subjects should be equivalent as well: r1(I3, I1),
r2(I4, I2), I3 ≡ I4.

It is important to note that these data patterns can be use-
ful for refinement of existing mapping sets only if they were
not taken into account by the original instance coreference
resolution algorithm. Otherwise, they become tautological:
e.g., by analysing a set of mappings produced by comput-
ing label similarity we can infer that equivalent instances
usually have similar labels. Therefore, the refinement pro-
cedure can be used in two cases: (i) where the provenance of
original mappings is available and the algorithm which pro-
duced them is known, or (ii) where a significant body of new
evidence is discovered, e.g., a new set of instance mappings
as a result of the process described in section 3.1.

4. EXPERIMENTS
In order to test our approach, we experimented with ex-

isting Linked Data repositories mentioned in our examples:

1. Finding equivalence links between individuals repre-
senting people in DBPedia and DBLP11 (auxiliary dataset:
Yago, gold standard size 1229).

2. Finding equivalence links between music contributor
individuals in LinkedMDB and corresponding individ-
uals in DBPedia (auxiliary dataset: Musicbrainz, gold
standard size 942).

3. Finding movie:relatedBook links between movie:film
individuals in LinkedMDB and books mentioned in
DBPedia (auxiliary dataset: RDF Book Mashup, gold
standard size 419).

11DBLP contains a substantial proportion of internal coref-
erence errors: e.g., several authors having the same URI
or the same person having several URIs. In our tests we
did not consider these issues: e.g., a mapping between in-
stances from DBLP and DBPedia was considered correct if
the DBLP instance was linked to at least one publication
which was written by the person represented by the DBPe-
dia instance.



Table 1: Test results

N Dataset Test Precision Recall F1

1 DBPedia/DBLP
Baseline 0.90 0.14 0.25
Aligned 0.93 0.89 0.91

2
LinkedMDB/DBPedia Baseline 0.99 0.68 0.81
(composers) Aligned 0.98 0.97 0.98

3
LinkedMDB/DBPedia Baseline 0.97 0.82 0.89
(books) Aligned 0.96 0.97 0.96

4
LinkedMDB/DBPedia Baseline 0.993 1.0 0.996
(films) Aligned 1.0 0.999 1.0

5
Gutenberg/ Baseline N/A N/A N/A
DBPedia (books) Aligned 1.0 1.0 1.0

6
Book Mashup/ Baseline N/A N/A N/A
DBPedia (authors) Aligned 1.0 1.0 1.0

4. Refining existing equivalence links between movie:film
individuals in LinkedMDB and corresponding individ-
uals mentioned in DBPedia by analysing related actors
and release dates (total link set size 18512).

5. Finding equivalence links between books mentioned
in Gutenberg project and DBPedia (auxiliary dataset:
RDF Book Mashup, gold standard size 1201).

6. Finding equivalence links between book authors men-
tioned in DBPedia and RDF Book Mashup, (auxiliary
dataset: Gutenberg project, gold standard size 1235).

These tests were relatively small scale due to the need to
construct gold standard mappings manually. In the tests we
initially applied our instance-based schema-matching algo-
rithm to the datasets to obtain schema-level relations. Then,
these relations were passed as input to our data-level corefer-
ence resolution tool KnoFuss, which processed the datasets
to discover owl:sameAs links between instances. As a sim-
ilarity measure, we used Jaro string similarity applied to
the label. Test results (precision, recall and F1 measure)
are given in the Table 1. Two sets of results are provided:
(i) baseline, which involves computing transitive closure of
already existing links12, and (ii) combined set of existing
results and new results obtained by the algorithm after the
schema alignment. As was expected, the usage of automat-
ically produced schema alignments led to an improvement
in recall (rows 1, 2, 3, 5, 6) because initially missed links
were discovered. In case 4 precision was affected because
the mappings which did not conform to the data pattern
were removed. The change in precision was small due to
the large size of the dataset (140 mappings were removed
from the set of 18512), however, the precision of the refine-
ment procedure was high: out of 140 mappings identified as
potentially incorrect, 132 were actually incorrect.

When analysing the results of the experiments, we looked
into the limiting factors which caused errors. The most im-
portant factor involved the quality of the datasets them-
selves, in particular, improper use of schema entities and
incorrect data statements. For example, in the tests where
inferred data patterns were applied to the filter out incor-
rectly linked movie:film entities (row 4), we found that the
equivalence of release dates cannot be used as a restriction
on its own: in about 50% of cases the mapping was cor-
rect, while the release date was not provided correctly in
one of the datasets. Incomplete information could also lead

12As was said in section 3.1.2, for Gutenberg and Book
Mashup we did not have any baseline links available.

to problems: for example, in the DBPedia dataset many
musicians were not assigned to an appropriate class dbpe-
dia:MusicalArtist but instead were assigned to more general
classes dbpedia:Artist or even dbpedia:Person. As a result,
the mapping was established between classes movie: mu-
sic contributor and dbpedia:Artist instead of dbpedia: Musi-
calArtist. As a result, KnoFuss had to be applied to a larger
set containing many irrelevant individuals and produced sev-
eral erroneous coreference links between movie composers
and non-musical artists. Given that occurrences of incor-
rect data are inevitable in the Linked Data environment,
these issues have to be taken into account when designing
matching algorithms.

5. FUTURE WORK
In this paper, we described an approach which captured

schema-level relations between linked data repositories based
on available instance data and reused these relations to fa-
cilitate generation of new coreference links. In our experi-
ments, we applied this approach to small subgraphs of the
Linked Data cloud. In future, we plan to analyse the “schema
cloud” consisting of schema vocabularies used by Linked
Data repositories in combination with the “data cloud” in-
cluding the datasets connected by instance-level links. In
particular, it is interesting to investigate how the usage pat-
terns of the same vocabularies differ between repositories,
to which extent it is possible to capture relations between
their terms, and under which conditions these relations can
be utilised to support the coreference resolution process.
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