

Data Linking: Capturing and Utilising Implicit Schema-Level Relations

Andriy Nikolov Victoria Uren Enrico Motta

Data linking: current state

- Automatic instance matching algorithms
 - SILK, ODDLinker, KnoFuss, ...
- Pairwise matching of datasets
 - Requires significant configuration effort
- Transitive closure of links
 - Use of "reference" datasets

Problems

- Transitive closures often incomplete
 - Reference "hub" dataset is incomplete
 - Missing intermediate links
 - Direct comparison of relevant datasets is desirable
- Schema heterogeneity
 - Which instances to compare?
 - Which properties are relevant?

Background

KnoFuss architecture

Overview

- Inferring schema mappings from preexisting instance mappings
- Utilizing schema mappings to produce new instance mappings

Background knowledge:

- Data-level (intermediate repositories)
- Schema-level (datasets with more fine-grained schemas)

• Step 1:

Obtaining transitive closure of existing mappings

- Step 2: Inferring class and property mappings
 - ClassOverlap and PropertyOverlap mappings
 - Confidence (classes A, B) = $|c(A)\Pi c(B)| / min(c(|A|), c(|B|))$ (overlap coefficient)
 - Confidence (properties r1, r2) = |c(X)|/|c(Y)|
 - X identity clusters with equivalent values of r1 and r2
 - Y all identity clusters which have values for both r1 and r2

- Step 3: Inferring data patterns
- Functionality restrictions
- IF 2 equivalent movies do not have overlapping actors AND have different release dates THEN break the equivalence link

• Note:

Only usable if not taken into account at the initial instance matching stage

- Step 4: utilizing mappings and patterns
 - Run instance-level matching for individuals of strongly overlapping classes
 - Use patterns to filter out existing mappings

DBLP

```
SELECT ?uri
WHERE {
?uri rdf:type
movie:music_contributor .
}
```

DBPedia

```
SELECT ?uri
WHERE {
    ?uri rdf:type
        dbpedia:Artist .
}
```


Results

- Class mappings:
 - Improvement in recall
 - Previously omitted mappings were discovered after direct comparison of instances
- Data patterns
 - Improved precision
 - Filtered out spurious mappings
 - Identified 140 mappings between movies as "potentially spurious"
 - 132 identified correctly

Limitations & future work

- Large-scale tests
 - Billion Triple Challenge 2009, other repositories
- Initial mappings
 - What to do if a repository is not connected to any other one?
 - Utilizing low-cost instance-matching techniques

Questions?

Thanks for your attention

