Data.dcs: Converting Legacy Data into Linked Data

Matthew Rowe

Organisations, Information and Knowledge Group

University of Sheffield
Problem
Legacy data contained within the Department of Computer Science
Motivation
Why produce linked data?
Converting Legacy Data into Linked Data:
Triplification of Legacy Data
Coreference Resolution
Linking into the Web of Linked Data
Deployment
Conclusions
Problem

- The Department of Computer Science (http://www.dcs.shef.ac.uk) provides a web site containing important legacy data describing People, Research groups, and Publications.

Legacy data is defined as important information which is stored in proprietary formats.

Each member of the DCS maintains his/her own web page.

Heterogeneous formatting

Different presentation of content

Devoid of any semantic markup
Motivation

Leveraging legacy data from the DCS in a machine-readable and consistent form would allow related information to be linked together:

- People would be linked with their publications
- Research groups would be linked to their members
- Co-authors of papers could be found
- Linking DCS data into the Web of Linked Data would allow additional information to be provided:
 - Listing conferences which DCS members have attended
 - Provide up-to-date publication listings

Via external linked datasets
Converting Legacy Data into Linked Data

The approach is divided into 3 different stages:

1. Triplification
2. Converting legacy data into RDF triples
3. Coreference Resolution
4. Identifying coreferring entities into the RDF dataset
5. Linked to the Web of Linked Data
The DCS publication database provides publication listings as XML.

However, all publication information is contained within the same `<description>` element (title, author, year, book title):

```
<description>

<br>Edited by Sarah Duffy on Tue, 08 Dec 2009 09:31:30 +0000.]]>

</description>
```
Triplification of Legacy Data
Context windows are generated by identifying portions of a HTML document which contain a person’s name.

The structure of the HTML DOM is then used to partition the window such that it contains information about a single person.

HTML markup provides clues as to the segmentation of legacy data within the document.

Once a name is identified a set of algorithms moves up the DOM tree until a layout element is discovered.
An RDF dataset is built from the extracted legacy data. This provides the **source dataset from which a linked dataset** is built.

For person information triples are formed as follows:

```html
<http://data.dcs.shef.ac.uk/person/12025>
    rdf:type foaf:Person;
    foaf:name "Matthew Rowe" .
```

```html
<http://www.dcs.shef.ac.uk/~mrowe/publications.html>
    foaf:topic
    <http://data.dcs.shef.ac.uk/person/12025>
```
The triplification of legacy data contained within the DCS web sites (from ~12,000 HTML documents) produced **17,896 instances of foaf:Person and 1,088 instances of bib:Entry**

Contains many equivalent foaf:Person instances

Must also assign people to their publications

We create information about each research group manually to relate DCS members with their research groups:

<http://data.dcs.shef.ac.uk/group/oak>

```
rdf:type foaf:Group;
foaf:name "Organisations, Information and Knowledge Group";
```
Linking to the Web of Linked Data

Our dataset at this stage in the approach is **not linked data**

All links are *internal* to the dataset

To overcome the burden of researchers updating their publications we query the DBLP linked dataset using a Networked Graph SPARQL query:

```sparql
CONSTRUCT {
    ?p foaf:made ?paper
}
WHERE {
    ?group foaf:member ?q .
    ?q foaf:name ?n .

    GRAPH <http://www4.wiwiss.fu-berlin.de/dblp/> {
        ?x foaf:name ?n .
        ?y foaf:name ?c .
    }
    FILTER (?p != ?q)
}
```

The query detects authored research papers in DBLP based on co-authorship with co-workers.

[Example uses of the query]

Data.dcs is now up and running and can be accessed at the following URL:

http://data.dcs.shef.ac.uk (please try it!)

The data is deployed using

Recipe 1 from “How to Publish Linked Data”
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

Recipe 2 for Slash Namespaces from “Best Practices for Publishing RDF Vocabularies”
http://www.w3.org/TR/swbp-vocab-pub/

Viewing
<http://data.dcs.shef.ac.uk/group/oak> using OpenLinks’s URIBurner
Conclusions

Leveraging legacy data requires information extraction components able to handle heterogeneous formats.

Hidden Markov Models provide a single solution to this problem, however other methods exist which could be explored.

Presented methods are applicable to other domains, simply requires a different topology and training.

Current methods for Linked DCS Data into the Web of Linked Data are conservative: Bespoke SPARQL queries.

Future work will include the exploration of machine learning classification techniques to perform URI disambiguation.

This work is now being used as a blueprint for producing linked data from other national universities of Sheffield.
Twitter: @mattroweshow
Web: http://www.dcs.shef.ac.uk/~mrowe
Email: m.rowe@dcs.shef.ac.uk

Questions?