
R&Wbase: Git for triples

Miel Vander Sande
miel.vandersande@ugent.be

Pieter Colpaert
pieter.colpaert@ugent.be

Ruben Verborgh
ruben.verborgh@ugent.be

Sam Coppens
sam.coppens@ugent.be

Erik Mannens
erik.mannens@ugent.be

Rik Van de Walle
rik.vandewalle@ugent.be

Ghent University - iMinds
Department of Electronics and Information Systems, Multimedia Lab

Gaston Crommenlaan 8 bus 201
B-9050 Ledeberg-Ghent, Belgium

ABSTRACT
Read/Write infrastructures are often predicted to be the next big
challenge for Linked Data. In the domains of Open Data and cultural
heritage, this is already an urgent need. They require the exchange
of partial graphs, personalised views on data and a need for trust.
A strong versioning model supported by provenance is therefore
crucial. However, current triple stores handle storage rather naïvely
and don not seem up for the challenge.

In this paper, we introduce R&Wbase, a new approach build on
the principles of distributed version control. Triples are stored in
a quad-store as consecutive deltas, reducing the amount of stored
triples drastically. We demonstrate an efficient technique for storing
different deltas in a single graph, allowing simple resolving of
different versions and separate access. Furthermore, provenance
tracking is included at operation level, since each commit, storing
a delta and its metadata, is described directly as provenance. The
use of branching is supported, providing flexible custom views on
the data. Finally, we provide a straightforward way for querying
different versions through SPARQL, by using virtual graphs.

1. INTRODUCTION
In the Linked Data world, Read/Write infrastructures are often

predicted to be the next challenge [3], both in a large-scale context
such as the Web and in smaller contexts like data publishing or
harvesting. This challenge is currently discussed in several research
areas. First, there is big data management. The use of RDF allows
a rapid integration of many data sets, resulting in a fast increase
in volume. Furthermore, when many different parties have write
access, content grows fast (e.g., social media). Second, with data
originating from many different sources, the notion of trust becomes
vital. Users will require a personal view on data, according to
their trusted sources. Versioning data, and tracking, managing and
tracking provenance is therefore a crucial part. Third, in the domains
of Cultural Heritage and Linked Open Data, concrete issues have
already been specified.

Copyright held by the author/owner(s)
LDOW2013 May 14, 2013, Rio de Janeiro, Brazil
.

In the field of Cultural Heritage, harvesting metadata is a common
practice. The large amounts of exchanged metadata require harvest-
ing techniques to be cost-effective. The widely-used HTTP- and
XML-based protocol OAI-PMH [1] allows incremental harvesting,
which only collects the latest changes. This reduces network traffic
and other resource usage. Recently, cultural heritage has more and
more realized the benefits of machine-readable RDF [12]. Clearly,
these evolutions reflect strongly on triple storage, which has a huge
impact on today’s stores (e.g., OpenLink Virtuoso, Sesame, and
AllegroGraph). Concerning the challenges ahead, current solutions
store triples rather naïvely, which result in inefficient storage. Dif-
ferent versions of data can be stored in different graphs, but this
leads to a duplication of all triples. Furthermore, managing or ac-
cessing changes is not supported natively, which makes incremental
harvesting a painful task.

Another important domain is Linked Open Data. Current initia-
tives involve a unidirectional system where consumers download
datasets from data portals, published by governments. However,
with the key goal of public participation in mind, the Open Data
movement is moving towards Open Data Ecosystems [8]. This intro-
duces Open Data life cycles by installing a feedback loop. Feedback
allows, for instance, consumers to patch data in order to improve
data quality. Beyond doubt, strong version management will be
crucial, together with automatic provenance tracking and publishing.
Data providers and consumers need custom views on data, only
based on modifications from trusted parties.

In this paper, we introduce R&Wbase (Read-and-Write base), a
combined solution for meeting the requirements described above.
We propose a new approach for reading and writing triples by apply-
ing distributed version control principles. We include provenance
tracking at operation level, and publish it with every query result.

This paper is structured as follows. We start by discussing some
related work in Section 2. Next, Section 3 outlines our approach for
distributed triple version control in triple stores. The feasibility is
then demonstrated with a Proof of Concept in Section 4. Finally, we
discuss some future work in Section 5 and end with a conclusion in
Section 6.

2. RELATED WORK
There has already been significant work on distributed version

control in triple stores. One solution is SemVersion [13], a CVS1-
based RDFS and OWL versioning system. It manages versioned
models, i.e., ontologies under versioning, which hold references to
different versions. A version is a snapshot of the graph and holds

1Concurrent Versions System - http://www.nongnu.org/cvs/

http://www.nongnu.org/cvs/


different metadata, including a reference to the parent version and
a link to its provenance. Related, more complex work discusses
version control in the context of replicating partial RDF graphs [9].
This approach aims at lightweight clients (e.g., mobile devices)
that cannot store many triples or handle expensive processes like
difference calculation or conflict resolving. Triple bitmaps are used
to encode which triples are included in the partial graph and which
are not. These bitmaps are used after the modifications to merge
the partial graph back into the full graph. Cassidy et al. propose an
approach based on Darcs’ theory of patches [2], wherein a version if
described as a sequence of patches. Each patch uses named graphs
to identify a graph with deletions and one with additions. There is
only one version, where all patches are applied sequentially.

The previously mentioned works all succeed in providing version-
ing for RDF. However, they do not all reduce the storage overhead.
Also, the way these versions are accessed is not clear, nor can they
be queried separately. Branching and parallel versions are only sup-
ported in SemVersion, but cannot be resolved at query-time, since
they involve heavy recalculations. Provenance can perhaps be linked
to a specific version, but is not automatically available using the
tracked changes. Finally, the formalisation of deltas (or patches) is
either unknown, or causes a lot of overhead.

Im et al. discuss a version management framework [7], which uses
one original version and deltas to reduce storage space. Different
versions are constructed at query-time and use delta compression to
increase performance. These versions can exists in parallel, can be
merged and form different branches. A custom relational database is
used to store triples. A version is constructed by using SQL queries.
Although this results in high performance, it is relational database
dependent. This causes interoperability issues with existing triple
stores and prevents migration to more optimal storage solutions.

A very popular approach to version control for source code of
software is Git. Git is a fast, scalable, distributed revision control
system with an unusually rich command set that provides both high-
level operations and full access to internals [11]. Although it is not
perfect for datasets, Git has already been used as the engine behind
a couple of Open Data Ecosystems [8]. For instance, the city of
Montpellier2 and the city of Chicago3 created a Github account.
They have published their data in XLS, CSV, KML, SHP, and so
on. The metadata are stored in README files: who is the owner,
when was it published, category, description, license, and so on.
In Chicago, not only did they release the data, they also included
examples on how to use the data with R, a functional programming
language to statistically explore datasets. Stefan Wehrmeyer created
a Git repository4 to track changes in the German lawbook. Taking
this initiative as an example, The Netherlands5 and Flanders6 have
done the same. To publish Linked Data using Git, RDF triples need
to be serialized into a certain format first. In 2011, this was done by
Ross Singer for the MARC codes, a US standard for bibliographic
catalogues: he specified a normalized Turtle format in the README
of his repository and published the description of all the codes in
separate Turtle files7.

2https://github.com/VilleDeMontpellier/
3https://github.com/Chicago/
4https://github.com/bundestag/gesetze
5https://github.com/statengeneraal/wetten-tools
6https://github.com/okfn-be/codex-vlaanderen
7https://github.com/rsinger/LinkedMARCCodes/

3. DISTRIBUTED TRIPLE VERSION
CONTROL

Git is a great tool for text-based files, such as source code, but
it is not perfect for data. In this section, we give an overview
of our approach, which assembles the right version of the data at
query-time, for applying distributed version control principles to
a triple store.

3.1 Storage structure and algorithm
Our approach is to store only the deltas between each version

of a triple set, instead of storing each version in its entirety. This
reduces the amount of stored triples and will result into more ef-
ficient storage. A delta consists of a set of additions and a set of
deletions; modifications to a triple are considered a deletion immedi-
ately followed by an addition. To achieve this, all triples are stored
internally as quads [4], consisting of the original triple and a con-
text value, identifying the version and indicating whether the triple
was added or deleted. We thus provide an extra interpretation layer
above a traditional quad store, providing an interface to a versioned
triple store.

For every delta, we need to distinguish between the add-set and
the delete-set, and each sets need to correspond to exactly one delta.
Therefore, we identify every new delta with an even number 2y
that is larger than all preceding delta numbers. All triples that have
been added in this version compared to the previous are assigned
a context value of 2y. All triples that have been removed in the
version are assigned a context value of 2y+ 1. Furthermore, the
delta identifier 2y is used to store the delta’s metadata in triple
format, such as indicating the delta’s parents, the date, the person
responsible for the changes, etc. This collection of metadata is
known as a commit and is discussed in Section 3.2. The initial delta
is the first one added to the triple store, and will always have an
empty delete-set.

The interpretation layer is responsible for translating SPARQL
queries such that the underlying quad store appears as a regular triple
store. To find the answer to a query on version 2yn, we first find all
its ancestors A2yn = {2yi, . . . ,2y j}. This is done by traversing the
metadata for 2yn and can be cached to speed up subsequent requests.
An extra constraint is added to the query that the triples should
correspond to a quad whose context value is either 2ya or 2ya +1
(2ya ∈ A2yn ), e.g., triples that belong to either the add-set or delete-
set of versions from which 2yn derives. From this result set, we only
need the triple with the highest context value. This can result in
three possible cases for each triple (as shown in Figure 1):
the triple is not returned: the triple was not part of any version

and therefore may not be part of the result;
the triple has an even context value: the most recent change of

the triple in the version’s ancestry was an addition and there-
fore must be part of the result;

the triple has an uneven context value: the most recent change
of the triple in the version’s ancestry was a deletion and there-
fore may not be part of the result.

This indicates how the presence of a context element allows us to
store a history of additions and deletions with only deltas, while
allowing an efficient access pattern to the data because of carefully
crafted version identifiers.

3.2 Commits and Branching
Following the principles of Git, changes are made using commits.

A commit is a delta and associated metadata, consisting of a unique
identifier, a message, a reference to the parent commit, a reference
to the author of the changes, and a reference to the committer. In
a Semantic Web context, this collection of metadata is equivalent

https://github.com/VilleDeMontpellier/
https://github.com/Chicago/
https://github.com/bundestag/gesetze
https://github.com/statengeneraal/wetten-tools
https://github.com/okfn-be/codex-vlaanderen
https://github.com/rsinger/LinkedMARCCodes/


0

2

4

6

:Adam :knows :Bob delta:0
:Carlos :knows :Danny delta:0

:Adam :knows :Emma delta:2
:Carlos :knows :Freddy delta:2
:Carlos :knows :Danny delta:3

:Adam :knows :Freddy delta:4
:Carlos :knows :Danny delta:4
:Adam :knows :Bob delta:5

:Freddy :knows :Emma delta:6
:Carlos :knows :Freddy delta:7

Resultset 6

:Freddy :knows :Emma
:Carlos :knows :Danny
:Adam :knows :Freddy
:Adam :knows :Emma

Figure 1: In every version, even deltas indicate additions and
uneven deltas indicate deletions. The total result-set of 6 thus
only includes triples of which the highest context value is even.

to the notion of provenance, as defined by the WC Provenance
Incubator Group [6]. Therefore, each commit can be formalized in
RDF using the PROV-O vocabulary, as as demonstrated in Listing 1.
For this approach, the context value refers to a certain delta, and
user information is gathered from the authentication system of the
triple store. The identifier is an externally unique hash, derived from
the combined commit information. This hash is used to exchange
commits between different systems, enabling distributed techniques
similar to push and pull in Git. Internally, a lookup table maps each
identifier to a corresponding delta identifier, so the paths can still be
properly resolved.

@prefix prov: <http://www.w3.org/ns/prov#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix ex: <http://example.com/vocab#>.

@prefix version: <http://example.com/graphs/versions/>.

@prefix commit: <http://example.com/commits/>.

@prefix : <http://example.com/persons/>.

commit:hIjKlMn a prov:Activity;
prov:atTime "2013-02-16T01:52:02Z";
prov:used version:aBcDeFg;
prov:generated version:hIjKlMn;
dcterms:title "Update social graph.";
prov:wasAssociatedWith :Derek .

version:aBcDeFg a prov:Entity, ex:Dataset .

version:hIjKlMn a prov:Entity, ex:Dataset;
prov:wasDerivedFrom version:aBcDeFg .

:Derek a prov:Person .

Listing 1: Derivations can be directly descibed as provenance
using PROV-O

In the previous section, we mentioned the paths between the
different deltas. In practice, commits will provide the structure of
these paths through their parent relation. Because each commit only
refers to its predecessor, commits can be structured in a very flexible
way. This enables the use of branches. This implies that paths can

0 2 4 6 12

8 10

14 16
“is derived from”

Figure 2: A triple store is structured as a connected, directed,
acyclic graph.

2

8

10

:Carlos :knows :Freddy delta:8

:Adam :knows :Emma delta:11

Add-set
version 6

:Freddy :knows :Emma
:Carlos :knows :Danny
:Adam :knows :Freddy
:Adam :knows :Emma

Delete-set
version 6

:Adam :knows :Bob
:Carlos :knows :Freddy

Figure 3: Merging versions 6 and 10 causes triple conflicts,
because version 6 contains a deletion which has been added in 8.
and an addition which has been deleted in 10.

run in parallel, creating a connected, directed, acyclic graph, where
paths divert from and merge with each other (as shown in Figure 2).

3.3 Merging strategy
In Git repositories, it is fairly common to merge branches that

have diverged and should, naturally, be supported in a triple version
control system as well. Merging occurs when two parties start from
an initial version to add two different features, and in the end, both
features need to be incorporated in the end result. For instance,
in Figure 2, the commit chains 2–4–6 and 2–8–10 both start from
commit 2, and are merged in commit 12.

In order to merge two branches, we need to determine which
triples have been added or deleted in any of the branches. This is
done by resolving the deltas of each chain, respecting the depen-
dencies (e.g., deletion after addition results in deletion). In practice,
deltas are resolved in a similar way as in the context of query execu-
tion, described in Section 3.1. Here, we will keep both the delete-set
and add-set of both branches, and unite them.

Source code version control needs to maintain the line order of
each file. The used merging strategy asures this by determining
when merging causes conflicts, and how they can be resolved. Since
triples have no order, this strategy is up for discussion. For instance,
conflicts can be handled on a semantic level (as mentioned in Sec-
tion 5) or on a lower, more naïve level. For simplicity reasons, we
only discuss a naïve merging strategy below.

A merge conflict arises when a triple is added on one branch but
deleted on another, or vice-versa. This is demonstrated in Figure 3.
If such a conflict arises, we must ask the user to resolve each con-
flicting triple manually, since we cannot make any assumptions on
the semantics.

If there are no conflicts (or if all conflicts have been resolved),
the merge can be made. A merge will have two parents and will
simply inherit all non-conflicting triples. Since all conflicts must be



explicitly resolved, they are added to the commit as part of regular
add-sets and delete-sets. As a result, when a query is executed, the
triple either come from (i) branch A xor branch B if only one branch
contains the triple, (ii) branch A and branch B if both branches
contain the triple, (iii) from the merge commit’s add-set if there was
a conflict.

3.4 Supporting blank nodes
Blank nodes pose an issue when it comes to modifying triples and

this is no different with versioning. Since blank nodes cannot be
identified, deleting them is not trivial. Therefore, we handle blank
nodes in the following way. Added blank nodes will be part of the
add-set of the commit, as would any other triple. When deleting
blank nodes, (i) all triples that match the triple pattern in the delete-
set are deleted, or (ii) specific triples with blank nodes are deleted
when the internal identifier, as added by the triple store, is used. We
refer to future work for a more in-depth study on this issue.

3.5 Versioned querying using virtual graphs
Current triple stores allow data to be stored in different graphs. A

graph can be queried separately by specifying its URI in the FROM
clause of the SPARQL query. In our approach, we will expose
different versions of a graph as virtual subgraphs. Each version
refers to a resolved path of deltas. Therefore, the URI is composed
of the graph URI and the selected version identifier, as described in
the provenance. For example, the versions V2vn = {2vi, . . . ,2v j} of
graph http://example.com/graph will be available as virtual graphs
http://example.com/graph/versions/2vi, . . . ,2v j . The SPARQL query
in Listing 2, could therefore select the version from Figure 1.

SELECT *
FROM <http://example.com/graph/versions/aBcDeFg>
WHERE {?s ?p ?o}

Listing 2: A SPARQL query executed on the endpoint http:
//example.com/sparql/, querying version aBcDeFg, correspond-
ing to delta 6, of the graph http://example.com/graph/

Although this eases version selection, querying a specific version
will not always be desirable. The URIs of different versions can be
unknown, or the user wants to query the latest version validated by
the triple store manager. References are introduced. The first kind
of references are tags. A tag gives an alias to a version. The second
kind of references are branches. A branch refers to the last version
of a certain branch in the tree and give an alias to this branch. The
master branch is automatically created when a new R&Wbase graph
is initialized. A special kind of a reference is the HEAD. It points to
another reference, which will be used as the default branch to read
from and write to. References can be used as if they were version
numbers. In Listing 2 it is possible to substitute http://example.com/
graph/versions/6 with http://example.com/graph/versions/master
when 6 would be the last version of the master branch at that time.
This abstracts our approach to the SPARQL endpoint, which can be
queried the same way as with any other triple store.

SELECT *
WHERE {?s ?p ?o}

Listing 3: A SPARQL query with the same result as Listing 2
when executed on http://example.com/graph/versions/6/sparql/

In Listing 3, instead of using the FROM clause to query the
right version of the data, another SPARQL endpoint can be used,
dedicated to a certain version. When version 6 would be the master
branch, and the HEAD would refer to this one, the same result can

be retrieved when querying http://example.com/graph/ .
To conclude this section, we note that each virtual graph has

its complete provenance graph used internally. Therefore, it is
automatically published (e.g., in a HTTP Link-header) with every
query response, allowing the user to obtain trust over the results.

4. PROOF OF CONCEPT
In this section, we discuss the context of implementation as a

proof of concept. In the previous sections, we have introduced
an novel approach for providing distributed triple version control
in triple stores. A main contribution is the reduction of storage
space, which we demonstrate as follows. We sequentially add m
commits Cm = {c1, . . . ,cm} to an initial graph G with n triples. Each
commit ci adds an amount of triples a and deletes an amount of
triples d. For a naïve, graph-per-version approach, the resulting
amount of triples tA is equal to:

tA = n + (n+a−d)+((n+a−d)+a−d)+ . . .

= n + m×n + ∑
m
i=1 i× (a−d)

≈ n + m×n + m2× (a−d)

For our approach, the resulting amount of triples nB would be:

tB = n + m× (a+d)

In almost all cases, a and d will be tiny compared to n, resulting
into serious data reduction. Only in case a and d are similar in
magnitude to n (or larger), or when d is considerably larger than a,
our approach requires more storage space in the long haul. However,
this scenario seems unlikely. Furthermore, this can be resolved by
archiving several versions after rebasing, which is described later on.

Another contribution is the support for separately accessible ver-
sions, which are resolved at query-time and identified by virtual
graphs. We build an interpretation layer that interacts with a triple
store. It works triple store independent, but requires the support for
quads. The interpretation layer is mainly responsible for the filter op-
erations resolving the commit paths. A naïve implementation could
rewrite each query to include the right filter operations and let the
SPARQL processor resolve the right version. Although this would
lead to a fairly easy implementation, filter operations in SPARQL
increase execution time tremendously. Therefore, we choose to filter
the triples present in the requested version beforehand (e.g., as part
of a odbc connection), thus enabling the following optimisations:
Caching: Frequently requested versions, commits or branches can

be cached, speeding up the query time.
Indexing: The metadata describing the different branches can be

indexed, speeding up the filter operations.
Rebasing: Currently, we only discussed deltas being relative to

the initial delta, however, this will not always be optimal. In
this case, the initial delta is the base node. Every delta has
a path leading back to the base node. This path can not only
progress (when the start commit has a lower identifier), but
regress (when the start commit has a higher identifier). We
can move the base node further up the chain. This avoids
having to go to far back in time to resolve a version. When a
rebasing occurs, all paths leading from the new base node to
the former base node are reversed. Rebasing can restructure
deltas to obtain the lowest necessary amount of triples. Also,
when storage becomes an issue, deltas added before the base
node can be archived (e.g., serialised and compressed) or
deleted, lowering the number of active triples.

A final contribution is the integration of provenance on operation
level. Changes are directly described as provenance, and no longer
depend on descriptions by agents or persons.

http://example.com/graph
http://example.com/sparql/
http://example.com/sparql/
http://example.com/graph/
http://example.com/graph/versions/6
http://example.com/graph/versions/6
http://example.com/graph/versions/master
http://example.com/graph/versions/6/sparql/
http://example.com/graph/


5. FUTURE WORK
Just like Git for software, R&Wbase may create new possibilities

in the context of data management. In this section, we discuss future
work, divided into two main parts: interfaces and use cases.

5.1 Interfaces
Users will need to be able to interact with R&Wbase, therefore, a

study of possible interfaces is a logical step. Since we are building a
Linked Data solution for the Web, choosing SPARQL, as described
in Section 3.5, as a first interface is obvious. We however also need
a command line interface to manage distributed R&Wbase graphs
and a HTTP interface to create a Linked Data Platform.

Just like Git, a set of commands is needed by which the data can
be managed in a distributed way. The base command could be rwb,
an acronym for R&Wbase, with a set of subcommands inspired by
the Git workflow: commit, pull, push, clone, merge, diff, rebase, tag,
branch, init. . . For instance, cloning a dataset will result in ingesting
data in your own local triple store, pulling and pushing will be used
to synchronize changes with other copies. Merging, as discussed
in 3.3, will combine the changes in different branches. For now,
we have handled this issue rather naïvely. In future research, we
will work towards an intelligent way to resolve merge conflicts. An
example could be semantic merging, where ontology information is
used to create a merge that makes the most sense. Next, rebasing, as
discussed in 4, can select a more optimal delta as reference point, to
keep the other deltas as small as possible and rwb diff will show all
uncommitted changes to the graphs in a human readable way.

Next to SPARQL SELECT operations, SPARQL 1.1 also de-
scribes an interface to update triples [5]. With the INSERT, DELETE,
DELETE/INSERT, LOAD and CLEAR operations, triples can be cre-
ated, updated or deleted. In future work, we describe an interpreta-
tion layer translating SPARQL queries to the underlying quad-store.
Furthermore, An HTTP interface is required as well, making the
chosen URIs resolvable. At the time of writing, there is a working
draft for a Linked Data Platform (LDP) [10]. Future work will
describe how LDP can manage the different versions of the data.

5.2 Use cases
R&Wbase can be the driver behind a lot of new use cases. Keep-

ing these use cases in mind, R&Wbase will have to implement other
features as well, which future research will have to discuss. For
instance, based on trust and provenance, an application can decide
which version of the data is most optimal for a certain user. A sec-
ond example is storage of data valid in the future. For example, if
we want to store a lawbook in R&Wbase: references (tags) could
be used to query a certain version of the law book at a certain time.
But also, accepted laws will only be introduced after a year and thus,
querying in the future needs to be implemented. A third example
is of course the Open Data Ecosystem where a workflow needs to
be defined for Data Governance. Branches can be merged manu-
ally (comparing every triple), but also automatic merging, based on
certain parameters, or resolving conflicts are possible.

6. CONCLUSION
In this paper, we described how triple stores can support upcoming

Read/Write infrastructures on the Semantic Web, using distributed
triple version control. Instead of copying entire graphs to provide
versioning, triples are stored as consecutive deltas. Each delta only
stores an add-set and a delete-set relative to the previous version.
We have shown that our approach shows a significant reduction
in storage space. The number of stored triples is now relative to
the delta size, instead of the graph size, which is much smaller
in most cases. Furthermore, we explained how an interpretation

layer, interacting with a quad-store, can provide access to different
versions. We describe how the different deltas are stored in the same
graph, and efficiently distinguished using their context value. Added
triples of a delta 2y, are stored with the context value 2y, while
deleted triples are stored with context value 2y+1. We have shown
how different versions can be easily resolved by extracting triples
whose highest occurring context value is even. The use of caching,
indexing and rebasing (changing the base node of each delta path)
was discussed for further optimisation of version resolving. Then,
we demonstrated how deltas are made by adding commits, which
consist of a delta and associated metadata. Each commit holds a
reference to its parent and is therefore used to resolve a specific
version of the graph. We have shown how commits allow versions
to exist in parallel, creating different branches. The merging of
different branches was discussed, and how possible conflicts can be
resolved. Furthermore, we argued how commits are equivalent to the
notion of provenance, which can be directly described in PROV-O.
This includes provenance at the operation level, avoiding human
or agent interference, which can be automatically be published
to provide trust. Finally, we described how each version can be
accessed separately at query-time, using virtual graphs in SPARQL.

7. ACKNOWLEDGEMENTS
The research activities described in this paper were funded by

Ghent University, iMinds, the Flemish department of Economics,
Science and Innovation (EWI), Tourism and Recreation West-Flanders
(Westtoer), the Institute for the Promotion of Innovation by Science
and Technology in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWO-Flanders), and the European Union.

8. REFERENCES
[1] The Open Archives Initiative Protocol for Metadata Harvesting, 2004.
[2] S. Cassidy and J. Ballantine. Version control for RDF triple stores. In

ICSOFT (ISDM/EHST/DC)’07, pages 5–12, 2007.
[3] S. Coppens, R. Verborgh, M. Vander Sande, D. Van Deursen,

E. Mannens, and R. Van de Walle. A truly Read-Write Web for
machines as the next-generation Web? In Proceedings of the SW2022
workshop: What will the Semantic Web look like 10 years from now?,
Nov. 2012.

[4] R. Cyganiak, A. Harth, and A. Hogan. N-Quads: Extending N-Triples
with Context, Novemer 2009.

[5] P. Gearon and S. Schenk. SPARQL 1.1 update. W3C proposed
recommendation, W3C, Nov. 2012.
http://www.w3.org/TR/2012/PR-sparql11-update-20121108/ .

[6] Y. Gil, J. Cheney, P. Groth, O. Hartig, S. Miles, L. Moreau, and P. P.
da Silva. Provenance XG Final Report, Dec. 2010.

[7] D.-H. Im, S.-W. Lee, and H.-J. Kim. A version management
framework for RDF triple stores. international journal of software
engineering and knowledge engineering, 22(01):85–106, 2012.

[8] R. Polock. Building the open data ecosystem, 2011.
[9] B. Schandl. Replication and versioning of partial RDF graphs. In

Proceedings of the 7th international conference on The Semantic Web:
research and Applications - Volume Part I, ESWC’10, pages 31–45,
Berlin, Heidelberg, 2010. Springer-Verlag.

[10] S. Speicher and J. Arwe. Linked Data Platform 1.0. W3C working
draft, W3C, 2013. http://www.w3.org/TR/ ldp/ .

[11] L. Torvalds. git(1) manual page, 2013.
[12] S. van Hooland, R. Verborgh, M. De Wilde, J. Hercher, E. Mannens,

and R. Van de Walle. Evaluating the success of vocabulary
reconciliation for cultural heritage collections. Journal of the
American Society for Information Science and Technology (JASIST),
64(3):464–479, Mar. 2013.

[13] M. Völkel and T. Groza. Semversion: Rdf-based ontology versioning
system. In Proceedings of the IADIS International Conference
WWW/Internet 2006 (ICWI), page 44, 2006.

http://www.w3.org/TR/2012/PR-sparql11-update-20121108/
http://www.w3.org/TR/ldp/

	Introduction
	Related Work
	Distributed Triple Version Control
	Storage structure and algorithm
	Commits and Branching
	Merging strategy
	Supporting blank nodes
	Versioned querying using virtual graphs

	Proof of Concept
	Future Work
	Interfaces
	Use cases

	Conclusion
	Acknowledgements
	References

