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ABSTRACT 
Coping with the ever-increasing amount of data becomes 

increasingly challenging. To alleviate the information overload 

put on people, systems are progressively being connected directly 

to each other. They exchange, analyze, and manipulate 

humongous amounts of data without any human interaction. Most 

current solutions, however, do not exploit the whole potential of 

the architecture of the World Wide Web and completely ignore 

the possibilities offered by Semantic Web technologies. Based on 

the experiences gained by implementing and analyzing various 

RESTful APIs and drawing from the longer history of Semantic 

Web research we developed Hydra, a small vocabulary to describe 

Web APIs. It aims to simplify the development of truly RESTful 

services by leveraging the power of Linked Data. By breaking the 

descriptions down into small independent fragments, a new breed 

of interoperable Web APIs using decentralized, reusable, and 

composable contracts can be realized. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 

Software – Semantic Web, World Wide Web (WWW). 

H.4.3 [Information Systems Applications]: Communications 

Applications – Internet. D.2.11 [Software]: Software Archi-

tectures – Service-oriented architecture (SOA) 

Keywords 
Web; Web service; Web API; HTTP; REST; Linked Data; RDF; 

vocabulary; ontology; Hydra 

1. INTRODUCTION 
Never before in human history has access to information been 

easier. Knowledge is being shared at an unprecedented scale and 

the Internet enables frictionless communication across continents 

in fractions of a second. This abundance of data is increasingly 

becoming a challenge for humans to cope with. To address this 

issue, more and more systems are connected directly to each 

other. They exchange, analyze, and manipulate humongous 

amounts of data without any human interaction. 

In very large and loosely coupled systems, such as the Internet, 

the unavoidable heterogeneity has to be embraced and the fact that 

the data quality and meaning are fuzzy has to be accepted. The 

combination of Semantic Web technologies and the architectural 

style of the Web, REST [1], may prove to be a viable path to 

achieve that. Their combination enables data integration at large 

scale and solves some of the problems Web developers are con-

tinuously struggling with. 

Unfortunately, the Linked Data principles in specific and 

Semantic Web technologies in general, have not yet found wide-

spread adoption in the design of RESTful Web APIs. The funda-

mentally different models of Semantic Web technologies with 

their open world assumption, the lack or immaturity of tools, and 

the (perceived) complexity are just some of the reasons for this 

lack of adoption. At the same time, the community is just about to 

truly understand REST. While some of its constraints such as 

stateless interaction, uniform interface, identification of resources, 

or manipulation of resources through representations are most of 

the time respected, others are rarely implemented correctly; 

regardless of a service claiming to be RESTful or not. Primarily 

the constraints that demand self-descriptive messages and require 

the use of hypermedia as the engine of application state are often 

ignored. While the Linked Data community spends most of their 

efforts on the accurate description of resources, which could be 

compared to the self-descriptive messages constraint, the linking 

of data got little attention. Linked Data advocates the use of 

dereferenceable identifiers but leaves it open how to recognize 

them as RDF has no built-in notion of hypermedia. It uses URIs 

solely as identifiers. The best a client can do is to blindly try to 

interact with these URIs. 

To address these issues we developed Hydra, a lightweight 

vocabulary to describe Web APIs and to augment Linked Data 

with hypermedia controls. This enables developers to leverage 

RDF’s expressivity with REST’s benefits in terms of loose 

coupling, evolvability, and scalability. It also enables the creation 

of interoperable Web APIs that are accessible by generic clients. 

The reminder of this paper is organized as follows. In section 2, 

we describe the inherent differences between data models as used 

in programming languages and vocabularies intended for the 

Web. After presenting and discussing Hydra in section 3, we give 

an overview of related work in section 4. Finally, we conclude the 

paper in section 5. 

2. DATA MODELS VS. VOCABULARIES 
Current Web APIs typically have a well-defined data model, but 

unfortunately it is, most of the time, only documented in natural 

language. This documentation typically defines a number of 
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JSON objects (classes) with their properties. Properties are 

marked as optional or required, specify their value space, and 

typically define whether they are read-only (e.g. server-assigned 

identifiers), write-only (e.g. password[s), or read-write. Advanced 

features such as inheritance are rarely used—or at least not 

exposed to the clients. 

The first step to transform a classic JSON-based Web API into a 

Linked Data API is to uniquely identify classes and properties 

with Internationalized Resource Identifiers (IRIs). At that point, 

the first difference between RDF’s data model and the class-based 

programming paradigm most developers are familiar with be-

comes obvious. 

In RDF, properties have, just as classes and everything else that is 

identified with an IRI, global scope and independent semantics. In 

contrast, properties in the models used by most Web APIs are 

class-dependent. Their semantics depend on the class they belong 

to. In data models classes are typically described by the properties 

they expose whereas in RDF properties define to which classes 

they belong. If no class is specified, it is assumed that a property 

may apply to every class. This behavior stems from the fact that 

RDF Schema [2] and OWL [3], the two preferred languages to 

describe RDF vocabularies, work under an open-world assump-

tion. In contrast, data models used by programmers typically work 

under a closed-world assumption. The difference is that when a 

closed world is assumed, everything that is not known to be true is 

false or vice-versa. With an open-world assumption the failure to 

derive a fact does not automatically imply the opposite; it em-

braces the fact that the knowledge is incomplete. One of the 

effects illustrating the difference in those world views is that in 

data models an instance of a class also belongs to all its super-

classes, but not any other class. In ontologies using an open-world 

assumption, the same cannot be said unless classes are explicitly 

defined as being disjoint. 

These differences have interesting consequences. For example, 

the commonly asked question of which properties can be applied 

to an instance of a specific class cannot be answered for RDF. 

Strictly speaking, any property which is not explicitly forbidden 

could be applied. This may sound counter-intuitive and could lead 

to the wrong conclusion that RDF Schema and OWL cannot be 

used to define data models. In fact they can, but that is not their 

intended use.  

While data models are used to describe the information in a spe-

cific, well-delimited application domain; vocabularies, as de-

scribed by RDF Schema or OWL, are used to define concepts that 

can be shared across multiple application domains. In other 

words, data models are typically used to specify validity criteria 

and constraints for data processed within an application whereas 

vocabularies are used to reason over data to discover new 

knowledge. In this light, data models can be said to be intended 

for closed-world systems whereas vocabularies are intended for 

open, distributed systems. This may sound surprising as the moti-

vation for most Web APIs is to build open distributed systems. 

However, as a matter of fact, most current Web APIs just repre-

sent small, closed-world systems that happen to be accessible over 

a standardized protocol with a uniform interface, i.e., HTTP. 

Neither the entities, nor the concepts defined by such a Web API 

can be reused in other systems without special glue code. To 

simplify data integration and enable reuse, it would thus be sen-

sible to describe the data and behavior exposed by a Web API 

using RDF vocabularies. Keeping in mind their different intended 

use, we designed Hydra [4], a small vocabulary extending 

RDF Schema by concepts required to describe Web APIs.  

3. HYDRA 
Even though RDF uses IRIs as identifiers, it has no inherent sup-

port for hypermedia. Whether an IRI is intended to be derefer-

enced or not, depends implicitly on what it represents. FOAF’s 

homepage property, e.g., suggests that its values are 

dereferenceable IRIs. The Linked Data principles postulated by 

Berners-Lee [5] go a step further and recommend that all IRIs are 

dereferenceable. The results are large, interconnected graphs of 

data. Unfortunately, however, these graphs remain largely read-

only representations—just as most of the document Web was 

read-only at the beginning. To change this, a shared vocabulary 

able to describe affordances beyond simple dereferenceability is 

needed. Hydra is an attempt to define these missing concepts. 

The basic idea behind Hydra is to provide a vocabulary which 

enables a server to advertise valid state transitions to a client. A 

client can then use this information to construct HTTP requests 

which modify the server’s state so that a certain desired goal is 

achieved. Since all the information about the valid state transitions 

is exchanged in a machine-processable way at runtime instead of 

being hardcoded into the client at design time, clients can be 

decoupled from the server and adapt to changes more easily. 

3.1 Vocabulary 
Figure 1 illustrates the Hydra core vocabulary (the figure’s inten-

tion is to show how Hydra is used rather than its precise defini-

tion). At its center stands the ApiDocumentation class which 

represents, just as its name suggests, the documentation of a Web 

API. It enables a server to define the main entry point and to 

document the classes and properties as well the operations it sup-

ports. Furthermore, it enables HTTP status codes to be associated 

with additional information. Such descriptions may also be con-

structed and returned dynamically in response to client requests. 

This may sometimes be necessary as HTTP status codes are often 

not specific enough, making it difficult to understand the real 

cause of an error. For instance, a 400 Bad Request response is 
rarely informative enough by itself. 

Even though entities are identified by IRIs in RDF this does not 

imply that these IRIs are dereferenceable. In fact, neither RDF 

itself nor RDF Schema or OWL defines a concept to describe 

dereferenceable IRIs. Hydra’s Resource class does just that. It is a 

subclass of RDF Schema’s Resource class and can be used to 

signal a client that an IRI is dereferenceable and can be used to 

retrieve further information. This allows distinguishing Linked 

Data from data where IRIs are used exclusively as identifiers. 

Similarly, the Link class can be used to define properties whose 

values are known to be dereferenceable IRIs. 

It is not always possible for a server to create a complete link. For 

instance, links to query a server often require parameters which 

have to be filled at runtime by the client. To support such func-

tionality, Hydra uses URI Templates [6]. An IriTemplate (URI 

templates are allowed to contain all characters that are legal in 

IRIs; for consistency we thus decided to name the class 

IriTemplate instead of UriTemplate) consists of a template 

and a number of mappings. Each IriTemplateMapping maps a 

variable in the IRI template to a property. This allows a client 

to understand the meaning of the various variables and to replace 

them with concrete values in order to expand the IRI template to 



an IRI. Analogous to Link, there exists a property class 

TemplatedLink to create recognizable properties whose value is 

an IriTemplate. 

To enable clients to interact with a Web API beyond simple GET 

requests, Hydra contains the notion of operations. An operation 

represents the information necessary for clients to construct valid 

HTTP requests in order to manipulate the server’s resource state. 

As such, each Operation consists of a required HTTP method and 

optional expects and returns types. Similarly to the 

ApiDocumentation itself, operations may also document 

statusCodes that might be returned. This allows a developer to 

understand what to expect when invoking an operation. It has, 

however, not to be considered as an extensive list of all potentially 

returned status codes; it is merely a hint. Developers should 

expect to encounter other HTTP status codes as well. 

The alert reader might wonder why operations have no property to 

specify the target IRI. The reason for this is that operations are 

either bound to classes or link properties or directly associated 

with the resources they apply to. This means that the target IRI is 

communicated at runtime instead of being defined at design time. 

If an operation is bound to a class, it will apply to all its instances 

which will be dereferenceable resources (they are ignored for 

blank nodes). Similarly, if an operation is bound to a Link or a 

TemplatedLink, it will apply to the corresponding IRI value. 

Figure 1. The Hydra core vocabulary 



A difficult design decision we had to make was how to inform a 

client which data a server expects for a certain operation. Classes 

would lend themselves but, as we discussed earlier, in RDF it is 

practically impossible to say which properties belong to a class. 

This in turn makes it impossible for a client to know which data it 

has to send to a server in order to achieve a certain goal. It also 

makes it difficult to inform a client (or a developer for that matter) 

what it might expect in responses from a server. We decided to 

choose the simplest and most pragmatic solution, i.e., to augment 

a class definition with its supportedProperties. This not only 

solves the problem at hand, but also enables properties from other 

vocabularies to be reused directly. 

Each SupportedProperty consists of a property and optionally 

some flags specifying whether it is required, readonly, or 

writeonly.  Read-only properties cannot be modified by a client 

and are useful for information such as creation dates or, e.g., 

authorship information that gets set by the server based on login 

credentials. Write-only properties, on the other hand, are useful 

for things like passwords that a client can change but not retrieve. 

To ensure Hydra helps bootstrapping Web API development, it 

includes a small number of commonly used concepts. Since a lot 

of APIs deal with basic CRUD functionality, Hydra has three 

built-in types of operations, namely CreateResourceOperation, 

DeleteResourceOperation, and ReplaceResourceOperation. 

As their name suggest, they can be used to indicate to a client that 

an operation results in a resource being created, deleted, or re-

placed. Hydra does not restrict the mapping of these operation 

types to HTTP methods which means that a concrete delete opera-

tion might be mapped to a POST request. This is an intentional 

design decision to not unnecessarily restrict Hydra’s expressivity. 

The user is responsible for the mapping of operations to sensible 

HTTP requests respecting their semantics. It is purely the HTTP 

method which defines whether a method is idempotent or safe. 

The operation describes the result at a higher level of abstraction 

and can easily be reused across different Web APIs. This is one of 

the aspects which enable the creation of generic clients. 

Similarly to the predefined operation classes, Hydra defines clas-

ses for collections, another commonly concept in Web APIs. A 

Collection is simply a container pointing to a number of 

members. In Hydra, each of those members is a dereferenceable 

Resource. Since often it is desired to not serve the whole col-

lection at once, but to separate it into pages instead, Hydra also 

defines a specialized PagedCollection. Additionally to its mem-

bers, it may also specify the number of itemsPerPage, the 

totalItems and links to the firstPage, the nextPage, the 

previousPage, or the lastPage. This way, a client can easily 

navigate through a collection. Furthermore, Hydra’s search 

property, whose value is an IriTemplate, might be used to query 

such a collection. The currently only predefined property to use in 

such a mapping is freetextQuery. For small Web APIs, these 

built-in concepts are often enough to build and document the vast 

majority of the functionality. 

3.2 Discussion 
Normally, when using Linked Data, a machine-client has no 

choice but to try whether a specific IRI dereferences to a docu-

ment providing further information about the concept or not. The 

reason is that RDF lacks any notion of hypermedia or interaction 

models since IRIs are solely used as identifiers. This is one of the 

most fundamental hurdles to overcome when combining the 

Representation State Transfer (REST) architectural style [1] with 

the Linked Data principles [5]. Other formats, such as, e.g., 

HTML have multiple hypermedia action controls that can be 

embedded within the representations returned by a server. Hydra 

therefore provides generic concepts such as links and operations 

that can be used to augment Linked Data representations with 

actionable information. 

One of the design decisions was whether these controls should be 

optimized to be embedded directly into every single representa-

tion, or whether a separate document should be the preferred way 

to describe those affordances. We choose the latter approach for a 

number of reasons. First of all, the responses from most Web 

APIs are rather uniform, meaning that in a Web API there usually 

exist a small number of response “types” that are all completely 

consistent. This is quite different compared to human-facing Web 

sites where different pages differ heavily in order to keep their 

users engaged. Secondly, in contrast to a human user, a machine 

agent has no problems to remember a number of affordances and 

to apply them consistently to elements contained in responses. A 

similar approach would be prohibitive on the human Web since 

the resulting cognitive load put on humans would be way too 

heavy. Finally, an approach collecting the affordances supported 

by a server in a single description document is what programmers 

are already familiar with. This is not only the predominant form of 

documentation for Web APIs, but for APIs in general. The rea-

soning behind it is to allow a developer to quickly understand the 

capabilities of a server or programming library without having to 

traverse the whole state space. 

This knowledge concentration of supported affordances in a cen-

tral description leads to another interesting question that is left 

open for most current Web APIs, namely, how to discover that 

description. The typical approach is to fall back to a human oper-

ator which browses an API publisher’s website to locate the API 

description. That is a valid approach given that the API descrip-

tion is rarely machine-readable anyway. However, if the API 

document is machine-readable as it is the case for Hydra, it would 

be a serious limitation if the discovery of that description docu-

ment would require human intervention. Therefore, Hydra uses an 

HTTP Link header [7] to direct a client to the corresponding API 

document. The link relation used in such a Link header corre-

sponds to the IRI of Hydra’s apiDocumentation property. This 

enables the dynamic discovery of the API description at runtime 

and works across different APIs. As soon as an API links to re-

sources of a different API, a client can recognize the different API 

description and adopt itself accordingly. Since the API description 

is not bound to the API’s host, it becomes possible to rely on 

central, standardized API descriptions resulting in an even looser 

coupling between the client and the server. RDF’s use of globally 

unique identifiers furthermore allows parts of API descriptions to 

be shared and reused which improves interoperability and reduces 

costs. Hydra’s built-in, predefined operation types are a first step 

in that direction. We believe that it is possible to extract and 

standardize similarly reusable concepts for a wide variety of 

application domains. This builds the base for the creation of 

generic clients as we have shown in previous work [8]. 

Considering Hydra’s focus on reusability of concepts between 

different APIs, the question may arise why Hydra itself does not 

reuse other existing vocabularies apart from RDF Schema. The 

reason is simple. Hydra tries to address Web developers which do 

not necessarily have profound knowledge of Semantic Web 

technologies. As such, a simple, coherent, and self-contained 



vocabulary is easier to understand. Using, e.g., OWL class ex-

pressions [3] to specify required properties in the request class 

used in an operation would simply be too complex. In other cases, 

the potential reuse from vocabularies is too small to be justifiable. 

The HTTP vocabulary [9] is such an example. The only overlap-

ping concepts are Hydra’s HTTP method and statusCode proper-

ties. Such a small overlap does not represent a reasonable argu-

ment to include a dependency to a vocabulary. We did, however, 

align Hydra’s concepts with the corresponding concepts in the 

HTTP vocabulary which results in almost the same benefits with-

out producing an unnecessary dependency. In cases where related 

vocabularies exist but are not stable yet, we decided to postpone 

the decision. An example for this is the Linked Data Platform 

vocabulary [10] which we will discuss in more detail in the 

related work section. 

4. RELATED WORK 
While the semantic description of SOAP-based Web Services has 

been extensively researched, efforts targeting RESTful Web APIs 

have been quite limited. There exist a number of approaches for 

both semantic and syntactic descriptions, but most of them violate 

one of REST’s most fundamental constraints, the use of 

hypermedia. 

The most often discussed approach to describe RESTful services 

syntactically is the Web Application Description Language 

(WADL) [11]. It describes a service by exposing a number of URI 

templates with associated information such as the HTTP method 

and the required inputs to construct a request. This clearly indi-

cates that hypermedia is not supported. Furthermore, WADL 

urges the use of specific resource hierarchies which introduces an 

obvious coupling between the client and the server. Servers 

should have the complete freedom to control their own 

namespace.  

Swagger [12] follows a similar approach but is, in contrast to 

WADL which is XML-based, JSON-based. The biggest differ-

ence to WADL is that it does not impose any specific resource 

hierarchy. Other than that, it allows to associate almost exactly the 

same information to URI templates: an HTTP method, request 

parameters, response type, hints for returned status codes, and 

natural language descriptions. Swagger is mainly intended to 

enrich human-facing API documentations with interactive con-

trols so that the various operations can be simply tested but it also 

enables the automatic generation of client libraries. This makes it 

very similar to Google’s API Discovery Service [13] which fol-

lows a very similar approach and is mainly used to generate client 

libraries in different programming languages for Google’s numer-

ous Web APIs. 

Since all these approaches describe a Web API just syntactically, 

WSDL 2.0 [14] could in principle be used as well—but typically 

it is perceived to be too heavy for lightweight Web APIs. Over the 

years, the research community proposed a number of approaches 

enriching the syntactic descriptions with machine-readable 

semantics. SA-REST and hRESTS are probably the best-known 

representatives of this kind. Since an extensive review of all pro-

posed approaches and ontologies would go beyond the scope of 

this paper, we refer the interested reader to our previous work [15] 

for a detailed review. 

To the best of our knowledge, there exist only two approaches 

apart from Hydra combining RDF’s data model and expressivity 

with REST’s use of hypermedia, namely SEREDASj and 

RESTdesc. 

SEREDASj [16] is our previous effort to address the problem. It is 

a simple JSON-based format which focuses on the description of 

JSON resource representations and their interconnections. JSON 

responses can be mapped to concepts in a vocabulary and the 

same mechanism can be used to describe request templates. The 

key difference to all other approaches is that SEREDASj allows 

hyperlinks to be extracted from ordinary JSON responses. This 

allows developers to build hypermedia-driven clients and to trans-

form JSON representations into RDF. The combination of these 

two features also allows the data exposed by a Web API to be 

modified using SPARQL queries [17]. Despite some very promis-

ing prototypes, we found, from working with different developers, 

that the complete separation of the description layer from the data 

itself is suboptimal. Effectively it creates a second layer of inter-

connected resources on top of the data in JSON documents. This 

increased the cognitive load and made it difficult for developers to 

understand documents without at the same time looking at the 

SEREDASj description document. Furthermore, the syntax, which 

is based on JSON Schema, was often considered to be too 

verbose. Ultimately, these reasons lead to the development of 

Hydra and the use of JSON-LD as the serialization format as 

described in [8]. 

RESTdesc [18] is a promising effort aiming at the same goals as 

Hydra but using, at least at first sight, a radically different ap-

proach. It expresses functional descriptions of Web APIs in 

Notation3 [19], a data format extending RDF’s data model by 

concepts such as variables. These functional descriptions are 

composed of preconditions which entail certain postconditions, 

such as the existence of an HTTP request. A client thus needs to 

express its goal in terms of postconditions. If the preconditions are 

fulfilled, it becomes possible to deduce a HTTP request that, when 

executed, results in the desired post-conditions. It is worth noting 

that the HTTP request is part of the postconditions and not of the 

preconditions. This means that the data returned by a reasoner 

contains the HTTP request as if it would have been part of the 

input data. If several potential requests (or a chain of requests) are 

returned, it becomes difficult to interpret the data. It is also not 

entirely clear how the result of HTTP requests that are part of a 

requests chain are fed back into the data, i.e., how blank nodes are 

replaced with IRIs. Since Hydra descriptions can easily be trans-

formed into RESTdesc descriptions, in the long term it would be 

interesting to investigate the potential offered by the use of 

reasoning technologies. However, in the short term we believe 

that a more gradual introduction to Semantic Web technologies is 

necessary to achieve widespread adoption. 

Given the fact that it is being standardized at the W3C and the 

recent attention it got, it is worth comparing Hydra to the Linked 

Data Platform (LDP) [10]. While there appears to be quite some 

overlap between the Hydra and LDP the underlying assumptions 

and goals are quite different. The Linked Data Platform defines, 

just as Hydra, concepts such as resources and collections but it is 

misses any notion of operations. Effectively this means that, at 

least at the current stage, the Linked Data Plaform does not go 

beyond defining a standardized CRUD interface to manage re-

sources in collections. It could thus be characterized as an RDF 

version of the Atom Publishing Protocol [20]. The interaction 

models are almost identical. Collections can be used to store 

(more or less) opaque RDF documents. LDP has neither built-in 



support for the semantic description of operations other than 

CRUD nor does it allow the description of supported properties, 

classes, etc. The only way for a client to find out which properties 

are supported is to POST an RDF document to a collection which 

creates a new resource. It then has to inspect that resource to 

verify that all the data has been stored and no properties have been 

discarded. Given these differences, the Linked Data platform 

cannot be compared to Hydra in any means. It is questionable 

whether mainstream Web developers will see enough compelling 

reasons to adopt such an approach given that the same func-

tionality can be achieved with much simpler, proven approaches 

such as the Atom Publishing Protocol [20]. 

5. CONCLUSIONS 
The combination of the REST architectural style and the Linked 

Data principles offer opportunities to advance the Web of 

machines in a similar way that hypertext did for the human Web. 

Most building blocks exist already and are in place but they are 

rarely used together. Hydra tries to fill that gap. It allows data to 

be enriched with machine-readable affordances which enable 

interaction. This not only addresses the problem that Linked Data 

is still mostly read-only, but it also paves the way for a completely 

new breed of interoperable Web APIs. The fact that it enables the 

creation of composable contracts means that interaction models of 

Web APIs can be reused at an unprecedented granularity. 

In future work we would like to turn our attention to other aspects 

which are of interest for most Web APIs, e.g., authentication. 

Hydra was designed to be a modular vocabulary so that future 

companion vocabularies can be easily created to extend Hydra’s 

expressivity. Furthermore, we would like to investigate how the 

availability of machine-processable information can be used in the 

development process. Since the functionality can be described 

before it is implemented, testing, e.g., can commence much 

earlier. 
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