
LHD: Optimising Linked Data Query Processing Using
Parallelisation

Xin Wang
Electronics and Computer

Science
University of Southampton
Southampton, SO17 1BJ

xw4g08@ecs.soton.ac.uk

Thanassis Tiropanis
Electronics and Computer

Science
University of Southampton
Southampton, SO17 1BJ
tt2@ecs.soton.ac.uk

Hugh C. Davis
Electronics and Computer

Science
University of Southampton
Southampton, SO17 1BJ
hcd@ecs.soton.ac.uk

ABSTRACT
In the past few years as large volume of Linked Data has
been published, and processing distributed SPARQL queries
over the Linked Data cloud is becoming increasingly chal-
lenging. The high data traffic cost and response time sig-
nificantly affect the performance of distributed SPARQL
queries as the number of SPARQL end point and the volume
of data at each endpoint increase. In this context, paralleli-
sation is promising to fully exploit the potential of connec-
tions to SPARQL endpoints and thus improve the efficiency
of querying Linked Data. We propose LHD, a distributed
SPARQL engine that is built on a highly parallel infras-
tructure and able to minimise query response time, and we
evaluate its performance using a BSBM based environment.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed databases; H.3.3 [Information Stor-
age And Retrieval]: Systems and Software-Performance
Evaluation

General Terms
Design, Measurement, Performance, Experimentation

Keywords
SPARQL, Linked Data, distributed query processing

1. INTRODUCTION
Over the years a large amount of Linked Data has been pub-
lished and forms a global data space [11]. This data space is
structured and thus enables sophisticated processing. Mean-
while querying Linked Data on a large scale usually causes a
large amount of network traffic and has high response time.
In this context, to efficiently query the Linked Data cloud
becomes an increasingly significant challenge.

Copyright held by the author/owner(s)
LDOW2013 May 14, 2013, Rio de Janeiro, Brazil

Linked Data consists of RDF [10] data, which can be re-
motely queried by SPARQL [21] when the data is stored
in SPARQL endpoints1.The details of querying distributed
RDF data are taken care of by query engines. For example,
support of distributed queries is not explicitly mentioned
in SPARQL 1.0 which is the current version of SPARQL
specification. In the SPARQL working draft, SPARQL 1.1
[20], although multiple data services can be queried using
SERVICE keyword to indicate their URIs, it is the job of
researchers and developers to explore techniques that can
improve the performance of query engines.

A large number of techniques have been developed for query
processing in distributed database management systems (DBMS).
Although distributed SPARQL queries share some charac-
teristics with queries of distributed DBMS, their differences
make it not straightforward to use well-established DBMS
techniques in distributed SPARQL query engines. For ex-
ample, in the Linked Data cloud, fewer statistics are avail-
able and data services are connected over the Web. The
extremely large scale of the Linked Data cloud, and limita-
tions such as network bandwidth and data services’ capa-
bility bring more challenges into the research of distributed
SPARQL query optimisation.

In this work, we present LHD2 which is a parallelism-based
distributed SPARQL engine. LHD adopts

• A selectivity-based cost model that is able to estimate
the response time of parallel query plans;

• An optimisation algorithm that quickly produces par-
allel query plans having minimum communication cost
using heuristics and exhaustive search;

• A parallel execution system that exploits streaming
and parallelism to minimise the execution time.

We evaluate the performance of LHD using a distributed
extension of the Berlin SPARQL Benchmark (BSBM) [4]
presented in [30].

More specifically, in this paper we start by summarising re-
lated work of distributed SPARQL optimisation in section 2.
1In this paper, we only consider the scenario in which the
RDF data are stored in SPARQL endpoints.
2Large scale High speed Distributed engine



After that we provide details of our optimisation techniques,
and the implementation of LHD in section 3. We compare
the performance of LHD with two existing engines FedX
[25] and SPLENDID [5] in section 4. Finally we discuss the
outcome of these experiments, summarise conclusions and
outline future work in section 5.

2. RELATED WORK
The Linked Data cloud and distributed DBMS have many
characteristics in common. They both consist of many data
sets that can be accessed through network. They also aim to
reduce both the amount of data being transferred and the
query execution time. Many techniques have been devel-
oped to improve performance and scalability of distributed
DBMS, which can be adapted to querying the Linked Data
cloud. To process a distributed query, a query plan, which
consists of operations to execute the query, is firstly gen-
erated. A query usually can be executed using more than
one query plans, and query optimisation refers to the pro-
cess of searching for the optimal query plan(s). A widely
used technique of query optimisation in distributed DBMS
is exhaustive search, which first builds all possible query
plans and then identifies the optimum one according to a
cost model [14]. A representative approach in this class
is dynamic programming [26] which is adopted in most of
distributed DBMS such as System R∗ [18]. Dynamic pro-
gramming approaches can provide the optimal query plan
but also take more time than other approaches. There are
cases in which time is more important than the quality of
query plans. As a result, greedy algorithms that give less
optimal query plans in a short time have been proposed.
Between dynamic programming and greedy algorithms lies
the family of iterative dynamic programming (IDP), which
balance time and quality [14]. All of the three approaches
have been adopted in distributed SPARQL engines; dynamic
programming is adopted in SPLENDID, IDP is adopted in
DARQ [22], and greedy algorithms are adopted in FedX and
DSP [30]. The costs of query plans are estimated by cost
models, that provide an abstraction of the query environ-
ment [19]. When querying Linked Data, the accuracy of
cost models are limited by the information we know about
endpoints in the Linked Data cloud. Since information such
as network connection speed is difficult to obtain, most of
the distributed SPARQL engines’ cost models consider only
the size of data transferred on the Web. Operations con-
tained in query plans are usually joins (and operations to
access remote date sources). For instance, loop joins (e.g.
nested loop join, hash join, indexed join) are widely used to
aggregate query results from pieces. Semijoin uses existing
results to filter out invalid results before they are returned.
Furthermore, bind join [6], which replaces variables of a sub-
query using values of existing results, can dramatically re-
duce intermediate results under certain circumstances.

Approaches of querying Linked Data using SPARQL can be
roughly divided into two categories. One is called traversal-
based query execution [9]. This class of approaches discovers
related data services by resolving the URIs in queries and
intermediate results, and then extends the intermediate re-
sults incrementally by querying newly discovered data. The
final results are achieved by applying the two steps itera-
tively. One representative approach in this class is the work
presented in [8], which is improved in [7] by using some

heuristics. Similar work can be found in [15, 16], which pro-
pose a non-block iterator to improve query performance.

The second category contains those approaches that require
certain knowledge about the target data sources. For ex-
ample, NetworkedGraph [24] and FedX require the URIs of
data sources to be queried. Most approaches in this cat-
egory work with statistics, or service descriptions, of data
services. DARQ, SemWIQ [17] and DSP, for instance, main-
tain files containing the number of triples and the selectivity
of predicates, subjects and objects, while SPLENDID uses
the Vocabulary of Interlinked Datasets (VoID) [3] which is
widely used to describe RDF data. Due to the contents of
service descriptions being used, these approaches use differ-
ent strategies to assign triple patterns to data sources. In
FedX, for each triple pattern it sends ASK queries to all
data services to identify the data services that have the po-
tential to return results. Some approaches such as DARQ,
SemWIQ and DSP select for each triple pattern those data
services that contain the same predicate of this triple pat-
tern. SPLENDID adopts a mixture of the above two strate-
gies plus matching the class types of the resources of triple
patterns. Furthermore, a sophisticated approach containing
12 rules has been proposed in [2] which intensively exploits
VoID for source selection. Service descriptions also affect the
way costs are estimated in each approach. FedX uses only
heuristics to estimate the cost of triple patterns, while others
use more sophisticated and potentially more accurate cost
models. Approaches of this category regard the Linked Data
cloud as a loosely coupled distributed DBMS, and therefore
adopt many of the aforementioned distributed DBMS tech-
niques. Minimum spanning tree (MST) algorithms, which
belong to greedy algorithms, have been proposed in [27, 29]
and adopted in DSP. DARQ and SPLENDID adopt iterative
dynamic programming and dynamic programming respec-
tively. In query execution phase, loop joins are used by most
engines discussed here. In NetworkedGraph, a SPARQL ver-
sion of Semijoin is implemented using FILTER. Bind join is
widely applied in various engines, such as DARQ, FedX,
DSP and SPLENDID. DARQ and DSP use intermediate
bindings to replace variables of triple patterns, and then ex-
ecute the bound triple patterns. In FedX and SPLENDID,
intermediate bindings are wrapped in UNION clauses and
therefore many bindings can be sent in one query request.
Parallelism is also applied in query execution to improve ef-
ficiency. For example, ANAPSID [1] proposed an extension
of Symmetric Hash Join [23] to adapt to bursty connections
on the Web. FedX proposed a parallel task scheduler that
uses multiple thread to execute queries.

3. TECHNIQUES AND IMPLEMENTATION
OF LHD

Efficiently querying Linked Data on a large scale requires
a combination of techniques. To achieve this goal, LHD
aims to minimise the size of data transferred through the
network as well as to maximise the data transfer rate. In
the following sections we first describe data source selection
techniques and a response time cost model that are used
by LHD. Then we focus on an optimisation algorithm that
quickly produces optimal query plans for parallel execution,
and a parallel execution system that fully exploits capacity
of bandwidth and data sources.



1: d a void:Dataset ;
2: . . .
3: # simple statistics:
4: void:triples “td” ;
5: void:distinctSubjects “sd” ;
6: void:distinctObjects “od” ;
7: # statistics per predicate:
8: void:propertyPartition [
9: void:property p ;

10: void:triples “td.p” ;
11: void:distinctSubjects “sd.p” ;
12: void:distinctObjects “od.p” ;
13: ], [
14: . . .
15: ].

Figure 1: The statistics contained in a VoID file. Other
information is omitted for simplicity.

The optimisation of LHD focuses on basic graph patterns
(BGPs), and therefore, for queries containing multiple BGPs
we optimise each BGP separately. LHD is implemented us-
ing Jena3. However, Jena does not use parallelisation to
combine results of different BGPs, and therefore limits the
performance of LHD on certain queries. We will show the
limitation in the evaluation (section 4).

3.1 Data Source Selection
In LHD, metadata of data sources are obtained from VoID
files, which are provided by more and more data sources.
Data source selection eliminates irrelevant data sources at
an early stage and thus increases the accuracy of cost esti-
mation. LHD analyses the predicate partition information
in VoID files and identifies data sources having the same
predicate as relevant candidates to a triple pattern. Then
ASK queries enclosing the triple pattern are sent to these
candidates to refine selected sources (for more accurate cost
estimation). It worth mentioning that although we use simi-
lar techniques as in existing approaches (e.g. FedX, SPLEN-
DID and the work of Akar et al. [2]) to select relevant data
sources, we aim to increases the accuracy of cost estimation
rather than saving communication cost (since an ASK query
has similar cost to a SELECT query with no results).

3.2 Cost Estimation
In this section we describe a selectivity-based response time
cost model. We assume that the response time of a query
request is proportional to the number of bindings transferred
through the Web. Using the statistics of VoID files, we first
estimate the cardinality of each operation, and then estimate
the response time of query plans.

Cardinality estimation

Given the VoID file (shown in figure 1) of a data source
d, we have the total number of triples td, distinct subjects
sd and objects od in d, and we have the number of triples
td.p, distinct subjects sd.p and objects od.p in the partition
of predicate p. We assume that subjects and objects are
uniformly distributed in data sources. Given a triple pattern

3http://jena.apache.org/

T : {S P O}4, we use S(T ) to denote a function that gives
the set of relevant data sources of T , and selT (x) to denote
the selectivity of x with respect to S(T ), and cardT (x) to
denote the cardinality of x with respect to S(T ).

Single triple pattern

For T = {S P O}, the selectivity of each part is estimated
as follows:

selT (S) =



∑
d∈S(T )

td/sd∑
d∈S(T )

td
if var(P ) ∧ ¬var(S),

∑
d∈S(T )

td.p/sd.p∑
d∈S(T )

td.p
if P = p ∧ ¬var(S),

1 if var(S).

(1)

selT (P ) =



∑
d∈S(T )

td.p∑
d∈S(T )

td
if P = p,

1 if var(P ).

(2)

selT (O) =



∑
d∈S(T )

td/od∑
d∈S(T )

td
if var(P ) ∧ ¬var(O),

∑
d∈S(T )

td.p/od.p∑
d∈S(T )

td.p
if P = p ∧ ¬var(O),

1 if var(O).

(3)

where var(X) is a function that returns true if X is a vari-
able. We follow the line of [27, 22] to estimate the cardinal-
ity of triple patterns. Assuming that selT (S), selT (P ), and
selT (O) are statistically independent, the cardinality of the
triple pattern T is estimated as

card(T ) =
∑

d∈S(T )

td · selT (S) · selT (P ) · selT (O) (4)

Since we consider only the relevant data sources of T (rather
than the “global graph” constructed as the union of all data
sources), better source selection can increase the accuracy
of the cost model.

Joined triple patterns

Consider three triple patterns T1 : {?x p1 o1}, T2 : {?x p2 o2}
and T3 : {?x p3 ?y}, if the domain of p1 is a subset or a
superset of the domain of p2, then card(T1 1 T2) can be
estimated as min(card(T1), card(T2)). If the domain of p1
is a subset of the domain of p3, then card(T1 1 T3) can be
estimated as card(T1) · card(T3). However, these conditions
do not always hold in reality.

Given two triple patterns T1 : {S1 p1 O1} and T2 : {S2 p2 O2}
4In this section we use a question marked letter (e.g. ?x)
to denote a variable, a lower-case letter (e.g. s) to denote a
concrete value, and a upper-case letter (e.g. O) to denote
either a variable or a concrete values.



(we use concrete predicates p1 and p2 for simplicity), the join
selectivity sel(T1 1 T2) positively correlates to the number
of distinct values of the joined variable in the partitions of
p1 and p2, and negatively correlates to the total number of
distinct values of the joined variable. Assume that the sets
of subjects (or objects) of different datasets are pairwise dis-
jointed, we estimate the join selectivity as5

sel(T1 1 T2) =

∑
d∈S(T1)

sd.p1 ·
∑

d∈S(T2)

sd.p2∑
d∈S(T1)

sd ·
∑

d∈S(T2)

sd
if joined on S1 = S2,

∑
d∈S(T1)

od.p1 ·
∑

d∈S(T2)

od.p2∑
d∈S(T1)

od ·
∑

d∈S(T2)

od
if joined on O1 = O2,

∑
d∈S(T1)

sd.p1 ·
∑

d∈S(T2)

od.p2∑
d∈S(T1)

sd ·
∑

d∈S(T2)

od
if joined on S1 = O2

1 if no shared variables.

(5)

which is the possibility that a value of the join variable falls
into predicate partitions of both triple patterns. For triple
patterns that having variable predicates, we sum up the se-
lectivity for each possible value of predicates. When more
than two triple patterns are contained in a join, we accord-
ingly calculate the join selectivity as the possibility that a
value of the join variable falls into predicate partitions of all
triple patterns. The cardinality of joined triple patterns is
estimated as

card(T1 1 T2 1 . . . 1 Tn)

= sel(T1 1 T2 1 . . . 1 Tn) ·
n∏

i=1

card(Ti) (6)

Response time cost model

As a result of the intensive use of parallelism, LHD adopts
a response time cost model rather than a network traffic
model. To estimate a query plan we distinguish the execu-
tion of joins that require pre-computed bindings (e.g. bind
join, Semijoin, denoted as (q 1B t), where q is a join or a
triple pattern and t is a triple pattern) from those do not
need input bindings (e.g. hash join, nested loop join, de-
noted as (q 1 p), where q and p are joins or triple patterns).
Two triple patterns involved in a hash join can be executed
in parallel while in a bind join they have to be executed in
sequence. We say it is a plain access plan of a triple pattern
that executes the triple pattern directly, and a dependent
access plan if intermediate bindings are used to execute the
triple pattern (it should be noticed that the execution of a
dependent access plan also produces the results of a bind
join). We denote a plain access plan of t as acc(t), and a
dependent access plan with bindings of q as acc(q, t). We
assume the response time of a query is proportional to the
number of bindings sent to and returned from a data source,
and the response time of a query plan is estimated using the
following equations:
5For unusual joins (e.g. predicate-predicate or subject-
predicate), we manually choose a small number (0.00001 in
our implementation) as the join selectivity.

cost(q 1 p) = max(cost(q), cost(p)) (7)

cost(q 1B t) = cost(q) + cost(acc(card(q), t)) (8)

cost(acc(t)) = rtq + card(t) · rtt (9)

cost(acc(q, t) = card(q) · rtq + card(q 1 t) · rtt (10)

where rtq is the time of sending a triple pattern or a pre-
computed result to a data source, and rtt is the time of
receiving a result.

3.3 Optimisation Algorithm
When processing distributed SPARQL queries, most net-
work traffic and processing time are effected by the execu-
tion of triple patterns, and query optimisation aims to find
out the optimal execution order and access plans of triple
patterns. If in a query plan that all triple patterns are ex-
ecuted sequentially using plain access plans, any order of
execution produces the same amount of network traffic and
has the same processing time. Therefore, the choice that
which triple patterns are executed using dependent access
plans and whose bindings are required by these dependent
access plans (i.e. the number and dependency of dependent
access plans in a query plan) becomes essential in query op-
timisation. In LHD the parallel query plan is generated in
two steps. We first find the query plan with minimum re-
sponse time. This plan provides the information that how
triple patterns are joined, from which the number and de-
pendency of dependent access plans are decided. Then we
determine the actual order to execute all triple patterns in
a parallel fashion.

A query plan contains the order in which operations (e.g.
access plans, joins) are executed, and the methods to exe-
cute each operation (e.g. plain access plan, dependent access
plan, hash join). It should be noticed that given an execu-
tion order, the cardinality of a series of joins is independent
of the concrete methods of these joins (i.e. whether a join is
executed as hash join or bind join will not affect the number
of results of this join). Furthermore, given the number of
input bindings, we can determined whether a plain access
plan or a dependent access plan generates less network traf-
fic. Therefore, we can determine the order of execution and
the methods of operations separately to reduce the search
space of query plans. The methods to execute operations can
also be determined during query execution using real-time
statistics. If the estimated cardinality deviants too much
from the actual cardinality, we can re-compute the network
traffic of certain access plans and use different access plans
if necessary.

Dynamic programming is used by LHD to find the minimum-
response-time query plan, thus all possible execution orders
are examined and for a specific order the best method to ex-
ecute each operation is determined. However, during inves-
tigation of the performance of other engines, we found that a
pure dynamic programming approach significantly increased
the processing time on BGPs with many triple patterns.
In the implementation of LHD, triple patterns that have a
concrete subject or object (here we call them partial-bound
triple patterns for simplicity) are executed using plain access
plans. We take advantage of this to improve the efficiency



of processing large BGPs without compromising the quality
of query plans. Given a query plan, executing a plain ac-
cess plan earlier than it should will not effect the amount of
network traffic of this plan (i.e. a plain access plan can be
executed at any time before its results are needed by other
dependent access plans). Therefore, LHD firstly scans out
all triple patterns that will be executed using plain access
plans (i.e. triple patterns that are partial-bound), and uses
dynamic programming to decide access plans and join or-
der for remaining triple patterns. The optimal plan found
by dynamic programming is appended to the plain access
plans generated before. The above procedure is shown in
algorithm 1.

Algorithm 1: Generation of the optimal query plan

input : A BGP b
output: A query plan optimal

1 initialP lan← ∅ ;
2 foreach triple pattern t of b do
3 if isPartialBound(t) then
4 remains← b\t ;
5 initialP lan← initialP lan ∪ plainAccP lan(t) ;

6 end

7 end
8 plan← dynamicProgramming(remains) ; /* Optimising

remaining patterns using DP */

9 optimal← append(initialP lan, plan)

Once the optimal query plans is generated, LHD determines
the execution order of each operation of the query plan. In
LHD, access plan starts to execute as soon as the intermedi-
ate results that it requires are ready. If a dependent access
plan depends on the results of another access plan, we say
the former has an execution order number which is one more
than the execution order of the latter. For example, a plain
access plan always has execution order 0 since it does not
require any input bindings. A dependent access plan can
have execution order 1 (when depending on a plain access
plan) or more (when depending on another dependent ac-
cess plan). LHD determines the execution order of all access
plans as follows: 1) scan the given query plan and add all
plain access plans to the set of execution order 0. Mark the
access plans of the current execution order as bound, and
increase the execution order by 1; 2) scan remaining access
plans (all are dependent access plans now) and mark those
dependent access plans, whose requirements are met, with
the current execution order. Increase the execution order by
1 and go to step 2 if there are still access plans remaining,
end the procedure otherwise. The above producer is shown
as algorithm 2.

A query plan produced by our algorithm can be regarded as
a partial-directed (i.e. some edges are directed while oth-
ers are not) graph as shown in figure 2. The nodes of the
graph are subjects or objects and the edges are triple pat-
terns. An undirected edge represents a plain access plan of
a triple pattern, while a directed edge represents a depen-
dent access plan that consumes bindings from its starting
node. Each edge has a execution order number, that edges
with smaller order numbers are executed earlier. Execution
order numbers are used to determine the execution order

Algorithm 2: Determining the execution order

input : A query plan p
output: A query plan with execution orders parallel

1 order ← 0 ;
2 bound← ∅ ;
3 while p 6= ∅ do
4 foreach access plan j in p do
5 dep← dependingP lans(j) ; /* Access plans

whose results are required by j */

6 if dep ⊂ bound then /* Dependency check */

7 parallel[order] ← parallel[order] ∪ j ;
8 bound← bound ∪ j ; /* Add j to bound */

9 p← p− j ;

10 end

11 end
12 order ← order + 1 ;

13 end

t1 : m p1 ?x, 0
t2 : ?z p2 ?y, 0
t3 : ?z p3 ?x, 0
t4 : ?x p4 ?k, 1
t5 : ?v p5 ?k, 2
t6 : ?v p6 ?x, 3
t7 : ?s p7 ?x, 4

(a) Triple patterns with ex-
ecution order

(b) A corresponding
query plan

Figure 2: An example query and its execution plan

for edges connected to the same node, but not edges con-
nected to different nodes (i.e. two edges of different nodes
are executed in a random order).

3.4 Parallel Query Execution
To improve the efficiency of query execution, LHD adopts
a sophisticated concurrent control system to fully exploit
the bandwidth and data sources. We separate execution of
query plans from communicating with (i.e. sending queries
to or receiving results from) data sources. The former is con-
trolled by the query plan executor, and the latter is managed
by the communication manager. The query plan executor
submits query execution tasks to the communication man-
ager, and the communication manager determine when to
execute certain tasks. This design enables us to indepen-
dently control the traffic to each data source and thus all
data sources can work at full strength.

Query plan executor

For the query plan executor, each edge is regarded as a data
stream which contains the results of executing the triple pat-
tern of this edge. We use a quadruple {t, n, s, E} to denote a
stream of evaluating a triple pattern t that has an execution
order n, a starting node s, and a set of end nodes E where
the stream goes into. For a stream corresponding to a plain
access plan, s is φ and E contains all variables of t that are



used as join variables. In case of a dependent access plan,
s is the node providing bindings and E contains the other
node of t. A stream consumes bindings of s (if not empty)
and pushes the results of evaluating t to the nodes in E.
Streams are joined at nodes. A node v is denoted as a pair
{In,Out} where In denotes a list of incoming streams and
Out a list of outgoing streams, ordering by their execution
order number from small to large. A node accepts results
of incoming streams, joins the results and triggers certain
outgoing streams. After execution starts, all streams of the
smallest execution order (i.e. 0) start. At a node v, incom-
ing streams that have not been used are joined. An outgoing
streams starts as soon as all incoming streams, whose execu-
tion order is larger than this outgoing stream, have started.
Once the results of a incoming stream is being consumed by
a outgoing stream, the incoming stream is marked as “con-
sumed” and will not be involved in future join or passed to
later outgoing streams (thus to make sure the stream will not
be joined twice). In case no outgoing streams exist for new
incoming streams (i.e. all out going streams have smaller ex-
ecution order than the new incoming streams), these streams
are redirected to a virtual node at where the final results of
the query are produced.

(a) Query execution
step 1

(b) Query execution
step 2

(c) Query execution
step 3

(d) Query execution
step 4

(e) Query execution
last step

Figure 3: Execution of a query plan

Figure 3 shows a step-by-step example of executing the query

plan shown in figure 2. At the beginning (figure 3a) three
streams of execution order 0, (t1, 0, φ, {?x}), (t2, 0, φ, {?z})
and (t3, 0, φ, {?x, ?z}) start. Since ?y is not used as a join
variable, no streams provide data to it. The streams of t2
and t3 are joined and marked as consumed at node ?z. Join
results are pushed to the virtual node V . In the mean-
time, the streams of t1 and t3 are joined at ?x (but not
marked as consumed yet). In the next step (figure 3b, stream
(t4, 1, ?x, {?k}) consumes the join results of streams of t1 and
t3, both of which are marked as consumed at node ?x, and
executes t4 using a dependent access plan. The stream of t7
keeps waiting since the stream of t6, whose execution order
is smaller than t7, has not started yet. Step 3 (figure 3c) is
similar to step 2 that executes t5 using a dependent access
plan. In step 4 (figure 3d the stream of t6 goes back into ?x
but is not joined with any stream (since all other incoming
streams of ?x are marked as consumed). In the final step
(figure 3e) only the stream of t6 is passed to the stream of t7.
The results of executing t7 that go into node ?s are passed to
the virtual node V . All results (as streams) at V are joined
to produce the final results of a query.

Communication manager

The actual execution of a query is managed by the commu-
nication manager. For each data source the communication
manager maintains several worker threads that send query
requests to and receive responses from the data source, and a
queue that stores tasks submitted to this data source. The
number of threads of each data source is set with respect
to the capability of and the connection to the data source.
Once the query plan executor invokes a stream, one or sev-
eral query execution requests are submitted to the commu-
nication manager. A plain access plan generates only one
request. For a dependent access plan more than one re-
quests are possible since the input bindings of the depen-
dent access plan can be partitioned into multiple segments
and then executed in parallel (i.e. using horizontal parti-
tion [13] to achieve intra-operation parallelism [12]). For
example, a dependent access plan that has ten input bind-
ings can be executed in parallel as two dependent access
plans each with five input bindings each, or even ten de-
pendent access plans each with one input binding. For each
request from the query plan executor, the communication
manager dispatches tasks to all relevant data sources of the
triple pattern of the request. A task first goes into the task
queue, waiting if all worker threads are busy, being executed
otherwise. Once the task queue becomes empty, all worker
threads are suspended until new tasks coming in.

The main advantage using this communication manager is
to control communication to different data sources indepen-
dently, and thus ensures that all data sources work at their
strength without being over flooded. Furthermore, sepa-
rating plan executor from communication manager enables
query plan execution to proceed without waiting for actual
query execution (as long as some data sources are providing
result streams), and query tasks are continuously submitted
to communication manager (to keep as many worker threads
working as possible).

3.5 Implementation of LHD



The execution system of LHD is built using pipelined paral-
lelism such as Double-pipelined Hash Join [23] and XJoin
[28]. Instead of using two hash tables like in a Double-
pipelined Hash Join, we maintain multiple hash tables at
a node to enable joining more than one streams simultane-
ously. A result coming from one stream is stored in the hash
table of this stream, and at the same time probed against the
hash tables of other streams. For example, at a time three
streams a, b and c are joined at a node ?x, and three hash
tables Ha, Hb and Hc are maintained respectively. Once a
result comes from a, it is stored to the hash table Ha under
the key of the value of ?x, and probed against Hb and Hc on
the same value of ?x. A join result is produced as soon as
matching records are found in both Hb and Hc, and given
to outgoing streams that consume the result. This multiple
hash join enables a node to execute several incoming streams
as well as outgoing streams in parallel. The execution will
not be delayed unless all data sources stop providing results.

When executing a dependent access plan there could be du-
plicated values of the depended variable (e.g. considering
two input bindings (?x → x1, ?y → y1), (?x → x1, ?y → y2)
for triple pattern {?x p ?z}, only one value (? → x1) is re-
quired by the dependent access plan of the triple pattern).
To eliminate unnecessary network traffic, we propose the
Hash Dependent Access (HDA) operator, that partitions the
input bindings using a hash table on the values of the de-
pended variable(s). Therefore we only use distinct values
to execute a dependent access plan, and the returned re-
sults of a specific input value are joined with bindings of
the same value in the hash table. When only one binding
is given for a dependent access plan, variables in the triple
pattern of this access plan are replaced by values of the given
binding (i.e. the implementation of bind join in DARQ and
DSP). Otherwise the input bindings are attached as inline
data using the VALUES6 syntax in the dependent access
plan. For example, to execute {?x p ?z} with input bind-
ings (?x → x1, ?y → y1), (?x → x1, ?y → y2), firstly a hash
table x1 → {(?x → x1, ?y → y1), (?x → x1, ?y → y2)} is
built. Then {x1 p ?z} is evaluated against relevant data
sources. The results (?z → z1), (?z → z2) are joined with
(?x → x1, ?y → y1), (?x → x1, ?y → y2) to produce the
complete results.

4. EVALUATION
In our previous work we have proposed a benchmark which
extends BSBM to distributed SPARQL evaluation [30]. In
our experiments, we generate about 40 million triples using
BSBM tools. All the triples are distributed over 10 SPARQL
endpoints which are deployed on 10 remote virtual machines,
following a power law distribution. All SPARQL endpoints
are set up using Sesame 2.4.0 and Apache Tomcat 6 with
default settings. The engines under testing are run indepen-
dently on a machine with an Intel Xeon W3520 2.67 GHz
processor and 12 GB memory.

4.1 Experiment Settings
In our experiment we use all queries of BSBM except query
6, 9 and 12. Query 6 contains only two triple patterns which
are too few to test query optimisation techniques (basically
there are only two possible order of execution, the choice

6http://www.w3.org/TR/sparql11-query/#inline-data

Figure 4: QPS of the three engines per query. NA means
time out.

of which depends on chance more than optimisation tech-
niques). Query 9 is a DESCRIBE query, whose results de-
pend on the implementation of SPARQL endpoints rather
than query engines. Query 12 is a CONSTRUCT query.
Although, from a query optimisation point of view, few dif-
ferences exist between CONSTRUCT queries and SELECT
queries, we prefer not to change the BSBM’s query and ex-
clude query 12. Since query 11 has only one execution plan,
we keep it to demonstrate the performance of query exe-
cution of each engine. Each query of BSBM is actually a
template, from which many instances are randomly gener-
ated in a test. We prefer those query instances that have
more intermediate results. Therefore, for each query, we
firstly generate thousands of instances, and then select the
top 20 instance that have more intermediate results than
others. This refinement of query instances significantly in-
crease the number of intermediate results on query 1 and
5. However, for a few queries (query 2, 4, and 10), none of
their thousands of instances had many intermediate results,
which is probably due to the design of BSBM.

We evaluate each engine with 5 warm up runs and 20 test
runs (each run uses a different instance of query). After the
execution of each query instance, we set a 10 seconds interval
for remote SPARQL endpoints to clear their job. Time out
of query execution is set to 120 seconds.

The metrics being used include the number of queries exe-
cuted per second (QPS), the size of outgoing (mainly queries
being sent out) and incoming (mainly query results coming
back) data, average CPU usage and memory usage. We also
confirm that all engines return the same number of results
for the same query.

4.2 Evaluation Results
We present the results of the three engines as the follow-
ing figures: QPS is shown in figure 4; outgoing data (in
megabyte) is presented in figure 5; incoming data (in megabyte)
is presented in figure 6; average CPU usage (in percentage) is
shown in figure 7, and average memory usage (in megabyte)
is shown in figure 8.

4.3 Results Analysis
From an overview of figure 4, we can see LHD improves
query efficiency for most queries. Meanwhile we notice that



Figure 5: Outgoing data of the three engines per query. NA
means time out.

Figure 6: Incoming data of the three engines per query. NA
means time out.

Figure 7: CPU usage of the three engines per query. NA
means time out.

Figure 8: Memory usage of the three engines per query. NA
means time out.

LHD has higher memory and CPU usage than FedX (figure 8
and 7). This is because LHD maintains a number of threads
for each data service separately, and therefore more threads
are used than in FedX. Since these threads are active only
when the task queues are not empty, the CPU and memory
usage of LHD are related to both the number of threads and
intermediate bindings (more bindings consume more mem-
ory and possibly generate more execution tasks). Query 1
confirms this argument that LHD improves query perfor-
mance with lower network flow and memory usage. Some
may argue that it is possible to improve the performance of
FedX by increasing the number of threads. However, the
number of concurrent threads used in FedX is limited by
SPARQL endpoints that have least computational power.
Those endpoints will be flooded by more threads and no re-
sults will return. By comparing the incoming and outgoing
data (figure 6 and 5), we notice that there is no significant
difference between the total amount of network flow of LHD
and FedX for most queries. This further confirms that our
execution system optimises bandwidth use on average.

LHD is built on Jena, in which BGPs of OPTIONAL queries
are pipelined and bindings are passed one by one. This slows
down LHD’s query execution since the bindings passed be-
tween BGPs cannot be merged into one query request. It is
expected that queries with many small BGPs (i.e. BGPs
containing a few triple patterns) are affected more than
those have one big BGP and a few smaller BGPs. Query 7
contains several small BGPs while query 8 has one big BGP
and a few small ones, and therefore LHD shows a lower QPS
than other engines on query 7 but a higher QPS on query 8.

SPLENDID is able to generate the best query plans but
does not optimise its query execution. It shows lower QPS
even when its network flow is lower than others (query 1).
The downside of SPLENDID’s query execution can be con-
firmed by query 11. Query 11 has only one query plan and
thus its execution time is mainly determined by query exe-
cution of each engine. Furthermore, the query optimisation
of SPLENDID takes a large amount of time on complex
queries, which leads the time our on query 2 and query 5
(the large number of results of query 5 is also part of the rea-
son). The significant optimisation time on complex queries
does not occur in LHD as a result of using heuristics in the
optimisation algorithm.



The network traffic charts also open questions worthy of fur-
ther investigation. For example, considering the query op-
timisation techniques used by SPLENDID, FedX and LHD,
it is excepted that SPLENDID has the best query plan and
thus has the least amount of network traffic while FedX has
the most. However, our experimentation results show that
for most queries, SPLENDID has the most network traffic
while FedX and LHD are comparable. The reason of this
contradiction could be that although SPLENDID generates
the best query plans, its query execution strategy generates
more traffic than FedX and LHD. Another possibility is that
the estimated cost (a result of either statistics or cost mod-
els) of SPLENDID or LHD are not accurate enough and
thus lead to pseudo-optimal query plans. Exploration on
either reason will lead to better understanding and further
improvement of Lined Data queries.

5. CONCLUSION
In this paper we explored parallel techniques to improve
the efficiency of distributed SPARQL query processing. We
proposed LHD, a distributed SPARQL engine that adopts a
response time cost model, an optimisation algorithm using
both heuristics and exhaustive search to find optimal paral-
lel query plans and a sophisticated parallel query execution
system. We evaluated our approach in a BSBM-based envi-
ronment and demonstrated that our techniques were effec-
tive at reducing communication cost and response time of
query processing.

Based on our experiment we observed that, although parallel
techniques improve efficiency, they can lead to the consump-
tion of more resources in terms of CPU, memory and band-
width, and to potentially over-flood SPARQL endpoints.
We also noticed that query optimisation based on pure ex-
haustive search algorithms can significantly increase query
processing time on queries with many triple patterns. Fi-
nally, our experiment revealed higher network traffic than
expected which could be a result of certain query execution
strategy or inaccurate cost estimation.

In the future we plan to explore methods that can reduce re-
source consumption of parallel query execution approaches.
In addition, the optimisation accross BGPs (i.e. optimising
BPGs of a query together ranther than separately) is wor-
thy of further investigation. Furthermore, more experiments
will be performed to find out potential issues in existing tech-
niques used in distributed SPARQL queries.

6. REFERENCES
[1] M. Acosta, M. Vidal, and T. Lampo. ANAPSID: an

adaptive query processing engine for SPARQL
endpoints. In ISWC2011, 2011.

[2] Z. Akar, T. G. Halaç, and E. E. Ekinci. Querying the
Web of Interlinked Datasets using VOID Descriptions.
In Linked Data on the Web (LDOW2012), 2012.

[3] K. Alexander, R. Cyganiak, M. Hausenblas, and
J. Zhao. Describing Linked Datasets On the Design
and Usage of voiD , the âĂIJ Vocabulary Of
Interlinked Datasets âĂİ. Linked Data on the Web
Workshop (LDOW 09), in conjunction with 18th
International World Wide Web Conference (WWW
09), 2009.

[4] C. Bizer and A. Schultz. The Berlin SPARQL
Benchmark. International Journal On Semantic Web
and Information Systems-Special Issue on Scalability
and Performance of Semantic Web Systems, 2009.

[5] O. Görlitz and S. Staab. SPLENDID: SPARQL
Endpoint Federation Exploiting VOID Descriptions.
In Proceedings of the 2nd Workshop on Consuming
Linked Data (COLD2011), 2011.

[6] L. Haas, D. Kossmann, E. Wimmers, and J. Yang.
Optimizing queries across diverse data sources. In
Proceedings of The International Conference on Very
Large Data Bases, pages 276–285. Citeseer, 1997.

[7] O. Hartig. Zero-Knowledge Query Planning for an
Iterator Implementation of Link Traversal Based
Query Execution. ESWC (2011), 6643:154–169, 2011.

[8] O. Hartig and C. Bizer. Executing SPARQL Queries
over the Web of Linked Data. The Semantic
Web-ISWC 2009, pages 293–309, 2009.

[9] O. Hartig and J.-C. Freytag. Foundations of traversal
based query execution over linked data. In Proceedings
of the 23rd ACM conference on Hypertext and social
media - HT ’12, page 43, New York, New York, USA,
June 2012. ACM Press.

[10] P. Hayes and B. McBride. RDF semantics, 2004.

[11] T. Heath and C. Bizer. Linked Data: Evolving the
Web into a Global Data Space. Synthesis Lectures on
the Semantic Web: Theory and Technology,
1(1):1–136, Feb. 2011.

[12] W. Hong and M. Stonebraker. Optimization of parallel
query execution plans in XPRS. Distributed and
Parallel Databases, pages 218–225, 1991.

[13] D. Kossmann. The state of the art in distributed
query processing. ACM Computing Surveys (CSUR),
32(4):422–469, 2000.

[14] D. Kossmann and K. Stocker. Iterative dynamic
programming: a new class of query optimization
algorithms. ACM Transactions on Database Systems,
25(1):43–82, Mar. 2000.

[15] G. Ladwig and T. Tran. Linked Data Query

Processing Strategies. The Semantic WebâĂŞISWC
2010, pages 453–469, 2010.

[16] G. Ladwig and T. Tran. SIHJoin: Querying Remote
and Local Linked Data. The Semantic Web: Research
and Applications, 6643:139–153, 2011.

[17] A. Langegger, W. Wöß, and M. Blöchl. A Semantic
Web Middleware for Virtual Data Integration on the
Web. The Semantic Web Research and Applications,
5021:493–507, 2008.

[18] G. M. Lohman. Grammar-like functional rules for
representing query optimization alternatives. ACM
SIGMOD Record, 17(3):18–27, June 1988.

[19] M. Özsu and P. Valduriez. Principles of distributed
database systems. Prentice Hall, 1999.

[20] E. Prud’hommeaux. SPARQL 1.1 Federation
Extensions. W3C Working Draft (1 June 2010), 2010.

[21] E. Prud’Hommeaux and A. Seaborne. SPARQL query
language for RDF, 2008.

[22] B. Quilitz. Querying distributed RDF data sources
with SPARQL. The Semantic Web: Research and
Applications, pages 524–538, 2008.

[23] L. Raschid and S. Y. W. Su. A Parallel Processing



Strategy for Evaluating Recursive Queries. pages
412–419, Aug. 1986.

[24] S. Schenk. Sesame RDF repository extensions for
remote querying. ZNALOSTI Conf, pages 375–378,
2008.

[25] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and
M. Schmidt. FedX: Optimization Techniques for
Federated Query Processing on Linked Data. In
Proceedings of the 10th International Semantic Web
Conference, Bonn, Germany, 2011.

[26] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. ACM Press,
New York, New York, USA, May 1979.

[27] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern
optimization using selectivity estimation. In
Proceeding of the 17th international conference on
World Wide Web, pages 595–604. ACM, 2008.

[28] T. Urhan and M. Franklin. XJoin: Getting fast
answers from slow and bursty networks. University of
Maryland Technical Report CS-TR-3994 (Feb.), 1999.

[29] B. P. Vandervalk, E. L. McCarthy, and M. D.
Wilkinson. Optimization of Distributed SPARQL
Queries Using Edmonds’ Algorithm and Prim’s
Algorithm. In 2009 International Conference on
Computational Science and Engineering, volume 1,
pages 330–337. IEEE, 2009.

[30] X. Wang, T. Tiropanis, and H. C. Davis. Evaluating
Graph Traversal Algorithms for Distributed SPARQL
Query Optimization. In JIST2011, 2011.


