
Describing Customizable Products on the Web of Data

François-Paul Servant
Renault

13 avenue Paul Langevin
92359 Plessis Robinson, France

francois-paul.servant@renault.com

Edouard Chevalier
Renault

13 avenue Paul Langevin
92359 Plessis Robinson, France

edouard.chevalier@renault.com

ABSTRACT
Exposing data about customizable products is a challenging
issue, because of the number of features and options cus-
tomers can choose from, and of the intricate constraints be-
tween them. However, the configuration process, by which
the customer makes her choice, one step at a time, is a
graph traversal among partially defined products; that is
Linked Data browsing. This natural yet fruitful abstrac-
tion for product customization hides complexity from the
client agent, and allows corporations to publish descriptions
of their ranges of products, in their own terms. To open
these ranges to comparison, corporate vocabularies have to
be linked to known entities in the LOD cloud; the creation
of sharable thesauri is discussed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Linked Data, Structured eCommerce data, Configuration,
GoodRelations, Automotive

1. INTRODUCTION
This work aims at defining a framework for the publishing
and for the consumption of data describing ranges of cus-
tomizable products.

In order to improve e-business performance and visibility,
an increasing number of manufacturers and vendors publish
product data on the web, relying on vocabularies such as
GoodRelations[1] and the schema.org initiative. This makes
their websites usable by client applications and improves
the accuracy of search engines, with interesting results for
products such as books or music: search results list actual
products rather than mere web pages, and include links to
commercial offers with price, ratings, etc.

Extending the publishing of data to customizable products,

Copyright held by the author/owner(s)
LDOW2013 May 14, 2013, Rio de Janeiro, Brazil

such as cars, raises challenging issues, which we study in this
paper.

In industries practicing “Build to Order” of customizable
products, ranges are huge, because of the number of fea-
tures and options a customer can choose from: more than
1020 different cars are for sale at Renault. Many constraints
between specifications reduce the number of valid combi-
nations, making the range difficult to describe (we use the
term “specification” to refer to the various characteristics of
a product a customer can choose from); if every combination
of distinct specifications were possible, there would be 1025

different Renault cars, not our mere 1020. In other words, by
picking one choice at random, independently for every spec-
ification, you would have only one chance out of 100,000 to
define a car Renault actually sells. Automatic reasoning is
required to handle the constraints and is a computationally
hard task. Such range definitions can be published on the
Web, including the constraints, by means of Semantic Web
languages [4]. But it would not bring many practical results
in the near future, as one cannot expect strong reasoning
capabilities from client agents.

Difficult to specify and hard to manipulate as they are, these
ranges of products are nevertheless described rather effec-
tively, for human users, by means of dedicated web appli-
cations called configurators. A configurator helps a user to
interactively define a product step by step, one choice af-
ter the other, each step describing a valid “Partially Defined
Product” (PDP), with a start price and a list of remaining
choices given all previous selections.

In a previous paper,“Product Customization as Linked Data”
[3], we have shown that product configuration can be seen
as a linked data application. The main idea is the model-
ing of the configuration process as the traversal of a graph
whose nodes are PDPs, or “Configurations”, each configu-
ration linking to those that refine it, until completion. By
identifying each PDP with a URI returning, among other-
relevant information, the list of the PDPs it is linked to, we
turn the description of the range to Linked Data. Identi-
fying the PDPs with URIs opens fruitful perspectives to e-
business, such as the easy sharing of configurations between
online and in-house applications, devices and media.

A simple and generic ontology1 describes the classes and
properties involved in this modeling of the configuration pro-

1http://purl.org/configurationontology



cess as Linked Data. This ontology is generic: it is domain
independent.

Renault uses this modeling to publish the data about its
range2: hundred billions of billions (1020) different cars, fully
described in RDF.

These descriptions, however, do not contain any link to the
rest of the world, that is, to existing vocabularies of the
linked data cloud that could provide shared understanding
of the terms. The only available information from which
some common understanding could be built are the labels
included with the descriptions. But what dataset could pro-
vide URIs for the many terms needed? You may find, say,
”Automatic gearbox” or ”Diesel” in DBpedia; what about
”Panoramic electric sunroof”, ”dual zone climate control”, or
”105g CO2/km”, though?

Therefore, more work needs to be done to open ranges of
similar products, from different constructors, to compari-
son; work by the producers of data, by the clients, or by
third parties, to link the corporate vocabularies used in the
description of those ranges to entities defined in sharable
thesauri.

The ultimate goal is to allow customers, not only to search
for partially defined products on the web - “find a small
diesel car with an automatic gearbox, a sunroof and MP3
connection plug for less than 15,000 euros” - but also to
choose themselves on which scale to compare results, e. g.
“available navigation systems plus CO2 emission levels”.

This document is structured as follows: section 2 lists re-
lated works. In section 3, we come back to the modeling of
the configuration process as linked data. This was discussed
in our earlier paper, but as it is the cornerstone of our work,
it cannot be avoided here. Section 4 explains how this inte-
grates with GoodRelations. Section 5 deals with the shared
understanding of terms, and the design of vocabularies ded-
icated to the definition of specifications.

2. RELATED WORK
The GoodRelations (GR) ontology, “the web vocabulary for
e-commerce”, has become a de-facto standard for the pub-
lishing of e-business data on the web, a status that has been
recently reinforced by its integration to the Schema.org col-
lection of schemas that is promoted by the major search
engines.

GR allows the description of product offerings. It has been
designed to be used in combination with additional ontolo-
gies for product types and their properties. This makes per-
fect sense (separation of concerns). Several such GR com-
pliant vocabularies have been developed, including by Hepp
Research, the creator of GoodRelations.

A study about the usage of GR, in 2011, notes however that
“the lack of available product ontologies and product master
datasheets is impeding the creation of a semantically inter-
linked eCommerce Web” [2]. This conclusion should proba-

2http://{de,es,it,fr,uk}.co.rplug.renault.com/docs
Quick start guide (live tutorial and js configurator) at
http://purl.org/configurationontology/quickstart

bly be reexamined as new GR compliant vocabularies have
been published. The Product Types Ontology (PTO) for
instance is a service for providing GR compatible OWL DL
class definitions for the 300,000 types of real-world prod-
ucts or services that have an entry in the English version
of Wikipedia. Schema.org has been updated with the “ad-
ditionalType” property, precisely to allow the use of PTO
classes to describe products.

Let us now turn to the situation of customizable products.
GR doesn’t seem to address the case of “partially defined
products”. At least, it does not make any explicit mention
of them. It could be argued that GR’s ProductOrService-
Model class, an abstraction used to model “prototypes” of
products, along with the ability to derive descriptions of ac-
tual products from it, could be used for that purpose, but it
requires non standard reasoning. The Vehicle Sales Ontol-
ogy (VSO), a vocabulary by Hepp Research, seems to define
properties only meant to be used in describing completely
defined products, in spite of their focus on a domain where
product customization is an important topic.

In the exact context of our work - that is, the grey area
where product configuration meets e-Commerce applications
of Linked Data - the main contribution that we know of is
Volkswagen’s “Car Option Ontology”3 (COO), an extension
to VSO. Their approach is different from the Configuration
Ontology we advocate: they include the constraints between
options in the publication, in a proprietary vocabulary. This
puts the burden of the reasoning on the client; however,
simple client agents do not have reasoning capabilities.

3. CONFIGURATION AS LINKED DATA
This was the subject of our previous paper, which we shall
only summarize here. For a complete treatment, please refer
to the original work[3].

3.1 Principles
As ranges of customizable products are too huge to be enu-
merated, they are defined in intention. The description of
a family of similar products (typically those of the same
“model”) is based on a “lexicon”, i.e., a set of variables repre-
senting the relevant descriptive attributes: body type, type
of fuel, color, etc. In a completely defined product, any of
these variables is assigned one value and one only. Then a
set of constraints restricts the possible combinations of spec-
ifications. The definition of a range of customizable prod-
ucts is therefore a Constraint Satisfaction Problem (CSP) -
something which is well known to be computationally hard.

A configurator application is the main way of presenting
such complex range of customizable products to customers.
It is a decision support tool that guides users to desirable -
and valid - product configurations.

Typically, the user is presented with successive choices in
a way that she cannot choose incompatible specifications.
Each successive state of the configuration process is char-
acterized by the specifications selected so far. A configura-
tion engine is responsible for ensuring that only valid choices

3http://purl.org/coo/ns



are presented at each step. In most of the configurator ap-
plications each step describes therefore a valid partially de-
fined product, in the sense that it can be completed, without
changing any of the current selections, into an existing fully
specified product, which can be ordered. We call “Config-
uration” any such valid, partially defined product: in other
words, any state of the configuration process.

Such an application can therefore be implemented as a GUI
over a REST service which takes the description of a valid
configuration (the list of the specifications already selected)
as input parameter, something like :

confService?chosenSpec=spec1&chosenSpec=spec2&...

(1)
and returns the next list of specifications to be chosen from,
all guaranteed to be compatible with the input. Choosing
one of them is then just a matter of adding it to the list of the
“chosenSpec” query parameters and of getting the updated
state of the configuration process.

Note that a query such as (1) identifies a configuration, and
can be used as a URI for the configuration in question; or,
more precisely, redirect to an actual URI of it; therefore, we
can improve the service by making it return the URI of the
linked configuration along with each compatible specifica-
tion: the representation of the configuration resource then
contains a list of couples (compatible Specification, linked
Configuration).

Such a service makes it easy to implement a configurator
application: accessing a configuration URI returns the data
needed to build the corresponding web page: basically a list
of links to the next configurations.

Most if not all configurator application on the web could be
(re-)implemented this way: it is just a matter of wrapping
the configuration engine in a REST service that provides the
data needed to generate the HTML.

The template of the service (1) can also be used as a simple
querying API. Mind however that any combination of spec-
ifications may not be valid. The service should detect such
invalid conjunctions and return a 404 Not found HTTP er-
ror. Only configuration engines that support free order can
provide such functionality in every circumstance.

3.2 “Configuration as Linked Data” ontology
The “Configuration as Linked Data” ontology (COLD)4 de-
scribes the classes and properties involved in the modeling
of the configuration process as Linked Data. It is really sim-
ple, with three main classes (Configuration, Specification
and ConfigurationLink), and a few properties that models
the state of a specification with respect to a given config-
uration: is it chosen? implied? possible? etc. Here is an
example Configuration:

foo:aConf cold:chosenSpec foo:Model1, foo:Diesel ;

cold:impliedSpec foo:ClimateControl;

cold:possible [a ConfigurationLink ;

cold:specToBeAdded foo:Sunroof;

cold:linkedConf foo:aConfWithSunroof].

4http://purl.org/configurationontology

3.3 Summary
Salient points in the above exposition are:

- configurations are first class objects, identified by URIs,
and they can therefore easily be shared between applica-
tions.

- The complexity of the range is hidden from the client. No
reasoning capability is required from the client agent.

- Ranges can be crawled, either starting from the root of the
dataset or from any configuration, and following links whose
semantics is precisely defined in the ConfigurationLink class.
Search engines are provided with enough information to cus-
tomize their strategies: they can choose which links they fol-
low (not all specifications are of equal interest: the sunroof,
the MP3 connector, etc. are probably more important - for
a customer as well as for a search engine - than, say, the
color of the ashtray.)

- The approach is domain independent.

4. INTEGRATION TO GOODRELATIONS
4.1 Product and commercial offer
A configuration mainly describes a Partially Defined Prod-
uct. As such, in GoodRelations terms, a Configuration is a
gr:ProductOrServiceModel: “an intangible entity that spec-
ifies some characteristics of a group of similar, usually mass-
produced products, in the sense of a prototype.” The suffix
“Model” may seem misleading when used for a Configura-
tion, as it suggests something such as “Ford T”, and not
“Ford T with climate control and MP3 connection plug” (it-
self not a completely defined product - you still can choose,
well, the color).

On the other hand, a configuration has a price. It can be
seen as a commercial offer, or the expression of a customer’s
wish list. It could therefore be considered as a gr:Offering
as well. These two GR classes being disjoint, however, Con-
figuration cannot be subClass of both.

4.2 gr:ProductFeature
GoodRelations has announced a new pattern for the descrip-
tion of products “that allows publishing arbitrary property-
value pairs for product features”5.

As of this writing, this is not available, and the online doc-
umentation is limited to a few examples, but it looks like
the gr:ProductFeature class is semantically very close to
our Specifications and could be used to represent them (a
“Specification” is a value of a “ConfigurationVariable”: it is
a property-value pair). We therefore strongly support the
idea, we hope that it will allow to fully support specifica-
tions, and we look forward to seeing it actually integrated
to GR.

Of special interest are the motivations given for the intro-
duction of this new pattern: “for publishing product features
from shop sites and manufacturer data sheets, it is often too
much of a burden to map the available product data into a

5http://wiki.goodrelations-vocabulary.org/Documentation
/Product features



standardized products or services ontology and its types and
properties... With that feature, a shop owner could easily
mark-up product feature tables and preserve as much data
and as much data structure and other meta-data as pos-
sible without the need to cleanse and lift the data before
publishing it.”

Indeed, it is very important to allow for the publishing of
data “as they are”, without requiring preliminary work, and
to decouple this initial publishing and the enhancement of
the data. This is exactly what our approach allows, as will
be argued below.

5. BUILDING SHARED UNDERSTANDING
The “Configuration as Linked Data” ontology is generic: it
does not depend on the variables and specifications that de-
fine a product, and it allows a publisher to use its own terms
in the descriptions. This is a very important point, because:

- the whole purpose of the configuration process is to come
out with an order for a completely defined product, which
implies its definition in the manufacturing company’s terms,

- no precision is lost, in contrast to what would happen if
we had to map to a different vocabulary

- it makes it possible to publish the data as they are in the
publisher’s systems, with no additional cost.

If only for these three reasons, the web of product data will
be based on the publishing of data that use corporate vo-
cabularies (in particular, no vendor will accept to downgrade
the description of its product for the sole purpose of making
it comparable to others’ products). This leaves unresolved
the question of the shared understanding which is necessary
to, for instance, compare ranges of similar products; shared
understanding can only be achieved through a deliberate
and methodical effort to enhance those data. Various tech-
niques can be used. For instance, labels can be used to (try
to) automatically recognize known entities, or they can be
used in SPARQL queries. In the end however, at least in the
Linked Data context in which we are interested, shared un-
derstanding is achieved by linking to the Linked Data cloud,
that is, by rooting the definition of entities through links to
existing terms in well established vocabularies.

The question becomes, then: do URIs already exist for them?
or can we automatically derive their URIs from preexisting
ones, the way the “Product Types Ontology” derive URIs
for products from DBpedia URIs? No doubt DBpedia will
provide such terms as dbpedia:Diesel, or dbpedia:Sunroof,
for instance; however most of what we need will be miss-
ing. Wikipedia pages may describe types of products and
specifications, but it is clearly not the purpose of an encyclo-
pedia to provide URIs for this kind of things, and it would
be abusive to add pages to wikipedia for the sole purpose of
creating these URIs.

The Configuration Ontology provides a generic framework
that must be complemented with dedicated, domain depen-
dent vocabularies providing the term definitions. These vo-
cabularies, ideally maintained by a community, would es-
tablish the links to terms from DBpedia or other datasets in

the LOD cloud, where such terms exist. They should also
be as usable by organizations such as automotive manufac-
turers, that produce lots of data describing whole ranges of
products, as by individuals selling their used cars (arguably,
a single car is not a customizable product, but a vocabulary
intended to describe a whole range should work, a fortiori,
when restricted to the case of a single product in the range).
The design of such a vocabulary should make it as easy as
possible to enhance “raw data” i. e., data not cleaned up
prior to publishing, in a process that do not require any
impact on the source systems.

In the remaining of this text, we study some consequences of
these requirements, and we express recommendations, based
on practical concerns. These recommendations may seem
obvious, but in the automotive field, the vocabularies we
are acquainted with do not follow them, which prevented us
from reusing them to increase the understandability of our
published data.

Actually, our main point is simply to advocate a shift from
vocabularies aimed at describing products, to vocabularies
aimed at describing specifications.

5.1 Supporting Partially Defined Products
Whatever ontology we choose, be it COLD or not, a PDP is
more than a Completely Defined Product with some prop-
erties left undocumented. This puts additional constraints
on the design of the vocabulary.

Let’s take an example to see the consequences. The “Vehi-
cle Sales Ontology” (VSO) is a vocabulary created by Hepp
Research to complement GoodRelations. It defines some
properties, such “fuelType”, to describe vehicles. The range
of“fuelType” is the“FuelTypeValue”class, and VSO encour-
ages the writing of statements such as:

foo:aCar vso:fuelType dbpedia:Diesel.

It is a very common pattern, however it does not work in
our case, or at least not well. This is because the descrip-
tion of PDP requires the ability to state more than one kind
of relation between a PDP and a given Specification: for a
given partially defined car, the fuel type may have been cho-
sen, or it may be implied, or we may want to say that both
diesel and gazoline are possible values, but that electricity is
not, etc. This is simply not possible with the vso:fuelType
property.

Actually, the above statement conflates two pieces of infor-
mation: the fact that dbpedia:Diesel is a FuelTypeValue,
inferred from the definition of the range of vso:fuelType,
and the fact that aCar is a diesel one. However, the former
could have been stated once and for all:

dbpedia:Diesel a vso:FuelTypeValue.

to be able, then, to just write something like

foo:aCar :hasSpec dbpedia:Diesel.

to convey the same actual information in the result. Surely,
no one will understand it as meaning Diesel is the color of



that car! Seen in that light, statements such as “foo:aCar
vso:fuelType dbpedia:Diesel.” are a bit pleonastic. In
other words, we can forget the vso:fuelType property, and
only retain the vso:FuelTypeValue class. This gets us back
a degree of freedom in the triples to include the extra infor-
mation we need to handle PDPs and to state, for instance,
with the COLD ontology:

foo:aConf1 cold:chosenSpec dbpedia:Diesel.

foo:aConf2 cold:possible [a ConfigurationLink ;

cold:specToBeAdded dbpedia:Diesel;

cold:linkedConf foo:aDieselConf].

Also note that, even in the case of completely defined prod-
ucts, using properties such as vso:fuelType makes it costly
to enhance raw data. Indeed, for every statement such as

foo:aCar :hasSpec dbpedia:Diesel.

we need to create a new statement using vso:fuelType; whereas
it should have been enough, here again, to state dbpedia:Diesel
is a FuelTypeValue to enhance all statements involving db-
pedia:Diesel at once.

So, instead of defining multiple properties, it is better to
define classes of Specifications. There is a small cost, how-
ever. When querying the description of a car for its fuel
type, instead of just

SELECT ?x WHERE {foo:aCar vso:fuelType ?x. }

we have to write:

SELECT ?x WHERE {

foo:aCar :hasSpec ?x.

?x a vso:FuelTypeValue.

}

5.2 Supporting hierarchies of terms
It is important that terms may be defined somewhat hier-
archically, in order to allow some inferencing: a car with,
say, an :ElectricSunroof, has a :Sunroof. This is necessary
for search as well as for comparator applications. SKOS hi-
erarchies could be used, but we tend to prefer a hierarchy
of RDF-S or OWL classes: the semantics of subClassOf is
well adapted to describe a hierarchy of classes of Specifi-
cations, tools are probably more widely available, and we
expect little benefit from the less formal semantics of SKOS
in that particular application. Note, however, that the vo-
cabulary would define classes of Specifications, then, rather
than instances, so that one should write statements such as:
foo:aCar :hasSpec [a :Diesel].

5.3 Definition of values
For values, VSO recommends to use DBpedia URIs (or to
mint new ones). We believe a vocabulary about vehicles
should provide lists of terms - it should provide for instance
:Diesel, and ensure its grounding in “the real world” by link-
ing it to dbpedia:Diesel. To this purpose, it is better to
avoid owl:sameAs statements, and we advocate the use of a
dedicated property that would mean “links a class of Speci-
fication to something that can be interpreted as identifying

the class in question” (the “Product Types Ontology” just
uses rdfs:seeAlso for this kind of link).

Anyway, assuming a vocabulary asserting something like:

:FuelType rdfs:subClassOf cold:Specification.

:FuelType owl:equivalentClass vso:FuelTypeValue.

:Diesel rdfs:subClassOf :FuelType.

:Diesel rdfs:seeAlso dbpedia:Diesel.

then, to enhance a basic statement as a source of raw data
would typically provide it:

foo:aCar :hasSpec foo:Diesel.

will be a simple matter of stating:

foo:Diesel a :Diesel.

Which can be done without any impact on existing systems,
and improves all statements involving foo:Diesel at once. Is
it not nice?

6. CONCLUSIONS
Data about customizable products can be published effec-
tively as Linked Data. Most, if not all, configurator appli-
cations on the web could be modified with relative ease, to
publish data that way. It gets us accurate descriptions of
complex ranges of products, which can be crawled by simple
agents: all reasoning takes place inside the service publish-
ing the data, its complexity hidden from the clients. For
search engines, the number of configurations is challenging
- we added more than 1020 of them to the web of data - but
the linked nature of the dataset should be sufficient to use it
effectively. The unresolved issue is the public specification
thesaurus, which we need to allow effective comparisons of
ranges of similar products. We gave some recommendations
for the creation of such vocabularies. We’d happily partici-
pate to a community initiative whose objective would be to
create one such vocabulary for the automotive domain.

7. REFERENCES
[1] M. Hepp. Goodrelations: An ontology for describing

products and services offers on the web. In Proceedings
of the 16th International Conference on Knowledge
Engineering and Knowledge Management.
Springer-Verlag, 2008.

[2] J. Ashraf, R. Cyganiak, S. O’Riain, and M. Hadzic.
Open ebusiness ontology usage: Investigating
community implementation of goodrelations. In
Proceedings of Linked Data On The Web Workshop,
2011.

[3] E. Chevalier and F.-P. Servant. Product customization
as linked data. In Proceedings of the 9th international
conference on The Semantic Web: research and
applications, ESWC’12, pages 603–617, Berlin,
Heidelberg, 2012. Springer-Verlag.

[4] F. Badra, F.-P. Servant and A Passant. A Semantic
Web Representation of a Product Range Specification
based on Constraint Satisfaction Problem in the
Automotive Industry. OSEMA Workshop ESWC (2011)
http://ceur-ws.org/Vol-748/paper4.pdf


