OSLC ResourceShape: A language for defining constraints on Linked Data

Arthur Ryman
Arnaud Le Hors
Steve Speicher

LDOW2013, Rio de Janeiro
Outline

- Motivation and use cases
- OSLC ResourceShape specification
- Going forward
 - Proposed RDF Validation workshop
Motivation

- Linked Data is a great way to integrate collaborating, distributed applications
 - software development tools are a prime example
 - e.g. requirements -> test cases -> defects

- Linked Data fuses REST and RDF
 - application developers need to understand the REST API contract
 - any API specification should describe both protocol and data format

- There are many examples of data format descriptions
 - OO class definitions
 - XML schemas
 - relational DDL

- How do you describe an RDF graph?
 - a graph is just a set of (possibly disconnected) triples
 - not necessarily OO
 - constraints may depend on the REST operation (GET, PUT, POST)
 - constraints may involve more than one graph (request/response, application, world)
 - it is also highly desirable to efficiently check these constraints
 - RDFS and OWL are not a solution (see Backup)
Use cases

- Consumers of a REST service API need to:
 - prepare data that the service provider will accept
 - accept data that the service provider returns

- Service providers need to:
 - validate incoming request data
 - ensure that outgoing response data satisfies the contract

- Data format descriptions act as metadata for generic tools
 - generate human-readable API documentation
 - generate input forms
 - generate report definitions
 - provide user assistance for query and report builders
 - etc.

- SPARQL is a good match for expressing the semantics of constraints and implementing a constraint checker

- SPARQL is a poor match for providing metadata to form builders, query builders, etc.
OSLC ResourceShape vocabulary

- **Open Service for Lifecycle Collaboration** (OSLC) is an organization that develops Linked Data specifications for tool integration
 - e.g. Requirements, Architecture, Configuration, Change, Quality
- OSLC experience formed basis for **Linked Data Basic Profile** submission to W3C
 - now under standardization by the **Linked Data Platform** working group
- OSLC ResourceShape is an RDF vocabulary for expressing common RDF graph constraints
 - high-level, developer-friendly way to specify typical data constraints
- The semantics of ResourceShape is expressible in terms of SPARQL ASK
 - returns **true** if constraint is satisfied, **false** if violated
 - implementers are not required to use SPARQL
- ResourceShape may be used to describe:
 - a resource (What is its structure?)
 - a creation service (What input is expected?)
 - a query capability (What properties are available?)
Example ResourceShape with occurrence constraints

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix oslc: <http://open-services.net/ns/core#> .
@prefix oslc_cm: <http://open-services.net/ns/cm#> .
@base <http://example.com/shape/oslc-change-request> .

<> a oslc:ResourceShape ;
 dcterms:title "Creation shape of OSLC Change Request" ;
 oslc:describes oslc_cm:ChangeRequest ;
 oslc:property <#dcterms-title>, <#oslc_cm-status> .

<#dcterms-title> a oslc:Property ;
 oslc:propertyDefinition dcterms:title ;
 oslc:occurs oslc:Exactly-one .

<#oslc_cm-status> a oslc:Property ;
 oslc:propertyDefinition oslc_cm:status ;
 oslc:occurs oslc:Zero-or-one .
SPARQL ASK Semantics for oslc:occurs oslc:Zero-or-one example

```
prefix oslc_cm: <http://open-services.net/ns/cm#>

ask {
  select ?resource
  where {
    ?resource a oslc_cm:ChangeRequest.
    ?resource oslc_cm:status ?status
  }
  group by ?resource
  having (count(?status) <= 1)
}
```
Overview of oslc:ResourceShape
Going forward

- Constraint checking is part of data validation
- Proposed W3C RDF Validation Workshop
- 10-11 September 2013, Cambridge, MA, USA
- Topics for position papers may include, but are not limited to:
 - usage scenarios, e.g. data deployment or input validation.
 - schema expressivity, e.g. SPARQL ASK compared to a grammar language like XML Schema or RelaxNG.
 - schema distribution.
 - distributed validation in collaborative environments.
 - performance.
 - management of schema evolution.
- Related work (see Backup)
 - OWL Integrity Constraint Checking
 - SPARQL Interencing Notation (SPIN)
Summary

- Linked Data application designers need a way to specify REST APIs, including constraints on RDF representations
- Generic tools for Linked Data applications need high-level metadata about the REST API
- RDFS and OWL do not satisfy this need
- OSLC ResourceShapes provides a high-level vocabulary for expressing constraints and can be implemented as SPARQL ASK
- The proposed W3C RDF Data Validation Workshop offers a forum where we can establish use cases and work towards a new standard
BACKUP
Why RDFS and OWL are not a solution

- Both RDFS and OWL have annotation properties
 - e.g. rdfs:label, rdfs:comment
 - useful for describing data

- However, the bulk of RDFS and OWL are about inferences, not constraints
 - e.g. rdfs:domain, rdfs:range
 - Reasoners use these interference rules to add more triples to a graph

- OWL reasoners will go to great lengths to reconcile apparently inconsistent data
 - Non-Unique Naming Assumption
 - Open World Assumption

- OWL reasoners use inconsistency to approximate constraint checking in some irreconcilable cases
 - e.g. x owl:differentThan x.
OWL infers: ex:Joe owl:sameAs ex:Bob .

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ex: <http://example.org/ns#> .

ex: a owl:Ontology .
ex:ChangeRequest a owl:Class .
ex:Owner a owl:Class .
ex:hasOwner a owl:ObjectProperty, owl:FunctionalProperty .

ex:Joe a ex:Owner .
ex:Bob a ex:Owner .
ex:MyRequest a ex:ChangeRequest ;
 ex:hasOwner ex:Joe, ex:Bob .
Related work

- **OWL Integrity Constraint Semantics**, Clark & Parsia
 - proposes alternate, non-inferencing semantics via a different import mechanism
 - similar motivation and use cases
 - *dual semantics may cause confusion*
 - *as an OWL extension, it brings in all the complexity of OWL*
 - *not graph oriented*
 - *not REST operation oriented*

- **SPARQL Inferencing Notation (SPIN)**, TopBraid
 - express constraints on RDF classes as SPARQL Ask queries
 - very flexible, expressive, and powerful
 - *requires SPARQL for implementation*
 - *not high level*
 - *not graph oriented*
 - *not REST operation oriented*