Similar Structures inside RDF-Graphs

Workshop on Linked Data on the Web (LDOW 2013)

Collocated with the 22nd International World Wide Web Conference (WWW 2013)

Anas Alzogbi Georg Lausen

> IIF INSTITUT FÜR

1. Motivation

- RDF datasets are growing constantly (e.g. LOD)
- Minimum Constraints for RDF data make it irregular, difficult to comprehend and visualize
- Idea
 - Discover RDF subjects which exhibit similar structures
 - Preserve the meaning by preserving the structure

2. Our Approach

- Two phases approach
 - Collapse Equivalent structures (Bisimilarity Equivalence)
 - Collapse Similar structures (Clustering)

3. Perfect Typing

Bisimilarity equivalence

Let G = (V, E, L) be an RDF graph,

Two nodes $v, u \in V$ are bisimilar $(v \approx^B u)$ if they

have the same set of outgoing paths: $P_v = P_u$

$$P_{v_2} = P_{v_6} = \{i\} \Rightarrow P_{v_2} \approx^B P_{v_6}$$

$$P_{v_5} = P_{v_3} = \{(a), (b, i), (c), (d, h), (d, g), (e)\}$$

$$\Rightarrow P_{v_3} \approx^B P_{v_5}$$

4. Similarity Based Reduction

- Hierarchical clustering
 - Exclusive, unsupervised
 - Requires similarity matrix
- Instance tree & intersection tree [Lösch et al. 2012]
 - $T_{\sigma}(v)$ is the instance tree of node v

4. Similarity Based Reduction

Instance tree & intersection tree

Pairwise similarity

$$sim(v_1, v_2) = \frac{size(intersect(T_{\sigma}(v_1), T_{\sigma}(v_2)))}{(size(T_{\sigma}(v_1)) + size(T_{\sigma}(v_2)))/2} = \frac{8}{8.5} = 0.94$$

4. Similarity based reduction

agglomerative algorithm for complete-link clustering

$$S_{1} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{2} & 0.4 & 1 & & \\ x_{3} & 0.2 & 0.9 & 1 & \\ x_{4} & 0.8 & 0.5 & 0 & 1 \\ x_{5} & 0.3 & 0.7 & 0.1 & 0.6 \end{pmatrix}$$

Dendrogram

4. Similarity based reduction

List of partitions

$$G(\infty) = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}\}\}$$

$$G(0.9) = \{\{x_1\}, \{x_2, x_3\}, \{x_4\}, \{x_5\}\}\}$$

$$G(0.8) = \{\{x_1, x_4\}, \{x_2, x_3\}, \{x_5\}\}\}$$

$$G(0.3) = \{\{x_1, x_4, x_5\}, \{x_2, x_3\}\}$$

$$G(0) = \{\{x_1, x_4, x_5, x_2, x_3\}\}$$

Which partition is appropriate?

$$IntraSim_{\mathcal{P}_{\tau}} = \frac{1}{|\mathcal{P}_{\tau}|} \sum_{c \in \mathcal{P}_{\tau}} IntraSim_{c}$$
 $IntraSim_{c} = \frac{1}{\lambda} \sum_{i < j}^{n} S[c_{i}, c_{j}], \text{ where:}$
 $\lambda = \frac{n(n-1)}{2}, n: \text{ the number of elements in } c$

Data set	Subjects	Objects	Predicates	Edges
SP ² Bench250K	50K	100K	61	250K
LUBM2	40K	20K	32	240K
BSBM500K	48K	100K	40	500K
SwDogFood	25K	55K	170	290K

- Experimental Results
 - IntraSim & Similarity value

- Experimental Results
 - 1. IntraSim & Partition size

Experimental Results

Data set	Subjects	RDF types	Clusters	errors
SP ² Bench250K	50K	9	85	0
LUBM2	40K	14	6	2
BSBM500K	48K	9	7	0
SwDogFood	25K	43	1918	22

LUBM2

2 universities appeared with 3728 courses

SwDogFood

21 ResearchTopics appeared with 36 SpatialThings

- Experimental Results
 - SwDogFood
 - 22K typed subjects
 - 43 different types

						Щ
۴	60 -					-
$IntraSim_{\mathcal{P}}$	40 -					-
Intra	20 -	— (25,	23)			-
	0 -					
	(0.	.5 1	$oldsymbol{1}$.5 2	2
		_ Λ	lumber	of Clus	sters	10^{4}

Partition	$\mathcal{P}_{64\%}$	$\mathcal{P}_{50\%}$	$\mathcal{P}_{45\%}$	$\mathcal{P}_{40\%}$	$\mathcal{P}_{35\%}$	$\mathcal{P}_{30\%}$	$\mathcal{P}_{23\%}$
#Clusters	1918	424	287	196	119	70	25
#Clusters with Types	1795	413	280	191	116	68	25
Multi Types Clusters	83	58	51	46	33	23	17
#Errors	22	133	209	209	209	210	251
Error Ratio	0,09%	0, 6%	0, 94%	0, 94%	0, 94%	0,95%	1,26%

6. Conclusion & Future Work

Conclusion

- Two phase approach
- Discover equivalent, then similar structures
- Use Bisimilarity equivalence + Agglomerative clustering
- Apply IntraSim as a metric to choose the best partition

Future Work

- Edge filtering
 Consider only important edges
- Experiment on bigger data sets

[http://www.superscholar.org]

Thank you for your attention!

References

[Lösch et al. 2012]
 U. Lösch, S. Bloehdorn, and A. Rettinger, *Graph Kernels for RDF Data*, in ESWC, 2012

SP²Bench250K

	#Instances	#Clusters
Person	20602	1
Document	1	1
Bag	139	6
Incollection	173	0 (all appeared with Inproceedings)
Inproceedings	9226	24 pure + 6 mixed with Incollection
Proceedings	213	10
Book	39	7
Article	17134	23
Journal	439	3

BSBM500K

	#Instances	Extracted
Person	689	689
Review	13600	13600
product	1360	1360
offer	27200	27200
productFeature	4745	4790
productType	151	151
producer	30	-
vendor	15	-
untyped	27266	27266

LUBM2

	#Instances	Extra Details	
Publications	13934	139	34
Graduate Student	2145	2145	
Undergraduate Student	13559	13559	17878
Teaching Assistant	947	947	1/0/0
Research Assistant	1227	1227	
Lecturer	210	210	
Associate Professor	410	410	1242
Full Professor	289	289	1242
Assistant Professor	333	333	
Graduate Course	1839	1839	
Course	1889	1889	3730
University	1000	2	
Olliveisity	1000	998	
Research Group	518	518	552
Department	34	34	002