
LHD: Optimising 
Linked Data Query 
Processing Using 
Parallelisation
Xin Wang, Thanassis Tiropanis, Hugh C. Davis

Electronics and Computer Science

University of Southampton



Motivations
• High growth rate of Linked Data demands faster query 

engines.

• Parallelisation is a promising technique and has not been 
explored much in Linked Data query processing.

• The differences between DBMS and Linked Data leads to 
unique challenges and it’s not straightforward to apply 
parallelization in Linked Data queries.



LHD: the parallel SPARQL engine
• LHD is a distributed SPARQL engine natively built on a 

parallel structure.

• Rather than the technical details described in our work, 
we’d be glad to see that LHD gives initial experiences for 
adopting parallelization in Linked Data queries, and 

most importantly, reveals relevant open issues.



Design issues
• Responding time estimation

• Balance between effectiveness and efficiency of query 
optimization

• Network connection is dynamic and has limited capacity



Components of LHD
Optimiser

• Responding time cost model

• Dynamic programming + Heuristics

Query plan executor (logical execution)

• Adaptive and parallel infrastructure

• Data-driven model

Traffic controller (physical execution)

• Traffic-jam proof

Query plans

Tasks



Responding time estimation
• Cardinality-based estimation

cost(q ⋈ p) = max(cost(q),cost(p))

cost(q ⋈B t) = cost(q) + cost(binding(q),t)

cost(t) = rtq+ card(t) · rtt

cost(binding(q),t) = card(q) · rtq+ card(q ⋈ t) · rtt



Optimisation algorithm
• To get a parallel query plan we firstly generate a 

sequential plan and parallelise it.

• Decouple generation of join relationship (or the join tree) 
and parallel execution order.

1. Generate a sequential query plan using dynamic 
programming

a) Triple patterns that have a concrete node are always execute in 
parallel before others.

2. Decide the parallel execution order of a sequential plan.
a) A triple pattern is executed as soon as its dependent bindings are 

ready.



Query execution (logical execution)
• Traverse a query plan and submits query tasks to traffic 

controller accordingly.



Traffic control (physical execution)
• For each data source separately maintain a certain 

number of query threads – traffic-jam proof.

• Query execution invokes query tasks rather than physical 
threads.

• Simplify traffic control.



A few open issues
1. Exhaustive search always give true optimal query 

plans, if, cost models are accurate to a certain extent. 

Are existing cost models (to be precise, cardinality 
estimation) meet the requirement?

2. To produce an accurate estimation requires certain 
detailed statistics, how hard is it to obtain detailed 
statistics from Linked Data cloud?

3. Static optimisation (producing query plans before 
execution) or dynamic optimization (producing query 
plans during execution)? 

4. Co-reference (owl:sameAs)?


