
RML: A Generic Language for Integrated
RDF Mappings of Heterogeneous Data

Anastasia Dimou
anastasia.dimou@ugent.be

Miel Vander Sande
miel.vandersande@ugent.be

Pieter Colpaert
pieter.colpaert@ugent.be

Ruben Verborgh
ruben.verborgh@ugent.be

Erik Mannens
erik.mannens@ugent.be

Rik Van de Walle
rik.vandewalle@ugent.be

Ghent University – iMinds – Multimedia Lab
Ghent, Belgium

ABSTRACT
Despite the significant number of existing tools, incorporat-
ing data from multiple sources and different formats into the
Linked Open Data cloud remains complicated. No mapping
formalisation exists to define how to map such heterogeneous
sources into rdf in an integrated and interoperable fashion.
This paper introduces the rml mapping language, a generic
language based on an extension over rrml, the wc stan-
dard for mapping relational databases into rdf. Broadening
rrml’s scope, the language becomes source-agnostic and
extensible, while facilitating the definition of mappings of
multiple heterogeneous sources. This leads to higher integrity
within datasets and richer interlinking among resources.

1. INTRODUCTION
Deploying the five stars of the Linked Open Data schema1

is the de-facto way of mapping data. In real-world situations,
multiple sources of different formats are part of multiple
domains, which in their turn are formed by multiple sources
and the relations between them. Approaching the stars as a
set of consecutive steps and applying them to a single source
every time—as most solutions tend to do—is not always an
optimal solution. When mapping heterogeneous data into
rdf, such approaches often fail to reach the final goal of
publishing interlinked data. The semantic representation of
each mapped resource is defined independently, disregarding
its possible prior definitions and its links to other resources.
Manual alignment to their prior appearances is performed
by redefining their semantic representations, while links to
other resources are defined after the data are mapped and
published. Nonetheless, as datasets are often shaped gradu-
ally, a demand emerges for a well-considered policy regarding
mapping and primary interlinking of data in the context of
a certain knowledge domains.

For instance, governments publish their data as Open Data
and turn them into Linked Open Data afterwards. Much of
this data, as expected when dealing with many sources, com-
plements each other in the description of different knowledge

1
http://5stardata.info/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

domain. Therefore, the same concepts appear in multiple
data sets, and problematically, often with different identifiers
or even in different formats. Furthermore, data is mapped
progressively, thus it is important that data publishers incor-
porate their data in what is already published. Reusing the
same unique identifiers for concepts is necessary to achieve
this, but it is only possible if prior existing definitions in the
same dataset are discovered and if they can be replicated.
Otherwise, duplicates will inevitably appear—even within
a publisher’s own datasets. Identifying, replicating, and keep-
ing those definitions aligned is complicated and the situation
aggravates the more data is mapped and published.

Solving this problem requires a uniform, modular, interop-
erable and extensible technology that supports this need for
gradually incrementing datasets. Such a solution can deal
with the mapping and primary interlinking of the data, which
should take place in a tightly coordinated way instead of
as two separate, consecutive actions. This ensures semantic
representations of higher quality and datasets with better
integrity. To this end, we propose rml, a generic mapping
language defined as an extension of rrml2, the wc recom-
mendation for mapping data in relational databases into rdf.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses related solutions existing today. Section 3
analyzes the requirements of a mapping language, and Sec-
tion 4 introduces the proposed approach. Next, Section 5
addresses the challenges of implementing an rml processor.
Finally, Section 6 outlines our conclusions and future work.

2. RELATED WORK
Several solutions exist to execute mappings from differ-

ent file structures and serialisations to rdf. For relational
databases, different mapping languages beyond rrml are
defined [3] and several implementations already exist3. Simi-
larly, mapping languages were defined to support conversion
from data in csv and spreadsheets to the rdf data model.
They include the XLWrap’s mapping language [5] that con-
verts data in various spreadsheets to rdf, the declarative
owl-centric mapping language Mapping Master’s M2 [6]
that converts data from spreadsheets into the Web Ontol-
ogy Language (owl), Tarql4 that follows a querying ap-

2
http://www.w3.org/TR/r2rml

3
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations

4
https://github.com/cygri/tarql

http://5stardata.info/
http://www.w3.org/TR/r2rml
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
https://github.com/cygri/tarql


proach and Vertere5. The main drawback in the case of most
csv/spreadsheet-to-rdf mapping solutions is the assumption
that each row describes an entity (entity-per-row assumption)
and that each column represents a property.

A larger variety of solutions exist to map from xml to rdf,
but to the best of our knowledge, no specific languages were
defined for this, apart from grddl6 that essentially provides
the links to the algorithms (typically represented in xslt)
that map the data to rdf. Instead, tools mostly rely on
existing xml solutions, such as xslt (e.g., Krextor [4] and
AstroGrid-D7), xpath (e.g., Tripliser8), and xquery (e.g., XS-
PARQL [1]). In general, most existing tools deploy mappings
from a certain source format to rdf (per-source approaches).
Few tools provide mappings from different source formats to
rdf; and those tools actually employ separate source-centric
approaches for each of the formats they support. Datalift [7],
The DataTank 9, OpenRefine10, RDFizers 11 and Virtuoso
Sponger12 are the most well-known.

3. MAPPINGS METHODOLOGY
After outlining the limitations of existing solutions, we

present the factors that can improve the mappings to produce
better integrated datasets and early interlinked resources.

3.1 Limitations of current mapping methods
We identified the following limitations that prevent current

practices from achieving well integrated datasets.

Mapping of data on a per-source basis. Most of the cur-
rent solutions work on a per-source basis: only one source
is mapped at once, as opposed to mapping different related
sources together, despite covering the same domains or shar-
ing the same formats. As a result, data publishers can only
generate resources and links between data appearing within
a single source. Their mapping definitions need to be aligned
manually when the same resources already appear in the
targeting dataset. Thus, data publishers need to redefine
and replicate the patterns for the resources’ uris definition
every time they appear in a new mapping rule. Furthermore,
this is not always possible, as the data included in the one
source may not be sufficient to replicate the same uris. This
results in distinct uris for identical resources, which leads to
duplicates within a publisher’s own dataset. In addition, the
interlinking of the resources generated from different sources
has to be performed afterwards.

Mapping data on a per-format basis. Besides the per-
source approach, most of the current solutions provide a
per-format approach: only mappings from a certain source
format (e.g., xml) are supported. In practice, data publishers
need to map various source formats to rdf. Therefore, they
need to install, learn, use and maintain different tools for
each case separately, which hampers their effort to ensure

5
https://github.com/knudmoeller/Vertere-RDF

6
http://www.w3.org/TR/grddl/

7
http://www.gac-grid.de/project-products/Software/XML2RDF.html

8
http://daverog.github.io/tripliser/

9
http://thedatatank.com

10
http://openrefine.org/

11
http://simile.mit.edu/wiki/RDFizers

12
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtSponger

the integrity of their datasets even more. Alternatively, some
end up implementing their own case-specific solutions.

Mapping definitions’ reusability. The mapping definitions
of current solutions are not reusable, as there is no standard
formalisation for any source format apart from relational
databases, i.e., rrml. In most cases, the mapping rules
are not interoperable as they are tied to the implementation,
which prevents their extraction and reuse across different
implementations. Moreover, this prohibits reuse of the same
mapping rules to map data that describe the same model,
but is serialized in different initial formats.

3.2 Requirements for generic mappings
To achieve datasets with better integrated and richer in-

terlinked resources, the aforementioned issues should be ad-
dressed during the mapping phase, rather than later. A set
of factors that contribute to this are outlined below.

Uniform and interoperable mapping definitions. Since
we require a uniform way of dealing with different source
serializations, the mapping definitions should be defined
independently of the references to the input data. The
same mappings may then be reused across different sources—
as long as they capture the same context (i.e., the same
rdf representations)—only by changing the reference to
the input source that holds the information. For example,
a performance described in a json file and an exhibition
described in an xml file may take place at the same location,
indicated by an identical longitude/latitude pair. We only
need a single mapping definition to describe their location,
adjusted to point to respectively the json objects and the
xml elements that hold the corresponding values. Therefore,
we require a modular language in which the references to the
data extracts and the mapping definitions are distinct and
not interdependent. Thereby, the mapping definitions can be
reused across different implementations for different source
formats, reducing the implementation and learning costs.

Robust cross-references and interlinking. Redefining and
replicating patterns every time a new input source is inte-
grated should be avoided. Publishers should be able to
uniquely define the pattern that generates a resource and
refer to its definition every other time this resource is mapped
(in this way enriched), which has the following three advan-
tages: First, possible modifications to the patterns, or data
values appearing in the patterns that generate the uris, are
propagated to every other reference of the resource, mak-
ing the interlinking more robust. Second, taking advantage
of this integrated solution, cross-references among sources
become possible; links between resources in different input
sources are defined already on mapping level. Third, and
most significant, when data publishers want to map a new
source, their new mappings are defined taking advantage of
and automatically aligning to the existing ones.

Extending the aforementioned example, the venue where
the performance and the event take place is the same. When
the input source for the performances was mapped, the
mappings for the possible venues were defined considering
certain identifiers to define their uris. Once the exhibitions
are about to be mapped, the data publisher might not be
able to reuse the existing mapping definition for the venues
as the identifiers are not included in the dataset to replicate

https://github.com/knudmoeller/Vertere-RDF
http://www.w3.org/TR/grddl/
http://www.gac-grid.de/project-products/Software/XML2RDF.html
http://daverog.github.io/tripliser/
http://thedatatank.com
http://openrefine.org/
http://simile.mit.edu/wiki/RDFizers
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger


the same patterns. However, the venue name might be
considered to determine the binding. Then, the existing
mapping definition can be referred to generate the same uris
and, thus enrich the existing resource with new attributes and
interlink data from the newly mapped dataset to the existing
one. As the original input source is an Open Data set that
can be referenced, it is always available to be used to support
the mapping of the new data. Summarizing, the definition
of the links between resources in different sources—even if
they are in different formats—happens on the mapping level
instead of during a subsequent interlinking step.

Scalable mapping language. As the references to the data
extracts and the mapping definitions are distinct and not
interdependent, the pointer to the input source’s data can
be adjusted to each case. Such modular solution leads to
correspondingly modular implementations that perform the
mappings in a uniform way, independent of the input source.
They only adjust the respective extraction mechanism de-
pending on the input source. Case-specific solutions exist
because complete generic solutions fail, as it is impossible to
predict every potential input. A scalable solution addresses
what can be defined in a generic way for all possible dif-
ferent input sources and scales over what cannot. In order
to support emerging needs, it should allow extensions with
source-specific references, addressed on a case-specific level.

4. RML MAPPING LANGUAGE
The RDF Mapping language (rml) is a generic map-

ping language defined to express customized mapping rules
from heterogeneous data structures and serializations to the
rdf data model. rml is defined as a superset of the wc-
standardized mapping language rrml, aiming to extend its
applicability and broaden its scope.

4.1 R2RML
rrml is defined to express customized mappings only

from data in relational databases to datasets represented us-
ing the rdf data model. In rrml, the mapping to the rdf
data model is based on one or more Triples Maps and occur
over a Logical Table iterating on a per-row basis. A Triples Map

consists of three main parts: the Logical Table (rr:LogicalTable),
the Subject Map and zero or more Predicate-Object Maps. The
Subject Map (rr:SubjectMap) defines the rule that generates
unique identifiers (uris) for the resources which are mapped
and is used as the subject of all the rdf triples that are gen-
erated from this Triples Map. A Predicate-Object Map consists
of Predicate Maps, which define the rule that generates the
triple’s predicate and Object Maps or Referencing Object Maps,
which defines the rule that generates the triple’s object. The
Subject Map, the Predicate Map and the Object Map are Term

Maps, namely rules that generate an rdf term (an iri, a blank
node or a literal). A Term Map can be a constant-valued
term map (rr:constant) that always generates the same rdf
term, or a column-valued term map (rr:column) that is the
data value of a referenced column in a given Logical Table’s
row, or a template-valued term map (rr:template) that is a
valid string template that can contain referenced columns.

Furthermore, rrml supports cross-references between
Triples Maps, when the subject of a Triples Map is the same as
the object generated by a Predicate-Object Map. A Referencing

Object Map (rr:RefObjectMap) is used then to point to the Triples

Map that generates on its Subject Map the corresponding re-

R2RML RML
Input Reference Table Name Source
Value Reference Column Reference
Iteration model per row(implicit) defined
Source Expression SQL (implicit) Reference Formulation

Table 1: R2RML Vs RML.

source, the so-called Referencing Object Map’s Parent Triples

Map. If the Triples Maps refer to different Logical Tables, a
join between the Logical Tables is required. The join condition

(rr:joinCondition) performs the join exactly as a join is exe-
cuted in sql. The join condition consists of a reference to a
column name that exists in the Logical Table of the Triples

Map that contains the Referencing Object Map (rr:child) and a
reference to a column name that exists in the Logical Table of
the Referencing Object Map’s Parent Triples Map (rr:parent).

4.2 RML
rml keeps the mapping definitions as in rrml but ex-

cludes its database-specific references from the core model.
The potential broad concepts of rrml, which were explained
previously [2], are formally designated in the frame of the
rml mapping language and are elaborated upon here. The
primary difference is the potential input that is limited to
a certain database in the case of rrml, while it can be a
broad set of (one or more) input sources in the case of rml.
Table 1 summarizes overall the rml’s extensions over rrml
entailed because of the broader set of possible input sources.

rml provides a generic way of defining the mappings that is
easily transferable to cover references to other data structures,
combined with case-specific extensions, but always remains
backward compatible with rrml as relational databases
form such a specific case. rml considers that the mappings
to rdf of sets of sources that all together describe a certain
domain, can be defined in a combined and uniform way,
while the mapping definitions may be re-used across different
sources that describe the same domain to incrementally form
well-integrated datasets, as displayed at Figure 1.

An rml mapping definition follows the same syntax as
rrml. The rml vocabulary namespace is http://semweb.

mmlab.be/ns/rml# and the preferred prefix is rml. More details
about the rml mapping language can be found at http://

semweb.mmlab.be/rml. Defining and executing a mapping with
rml requires the user to provide a valid and well-formatted
input dataset to be mapped and the mapping definition
(mapping document) according to which the mapping will be
executed to generate the data’s representation using the RDF
data model (output dataset). Data cleansing is out of the
scope of the language’s definition and, if necessary, should
be performed in advance. An extract of two heterogeneous
input sources is displayed at Listing 1, an example of a
corresponding mapping definition is displayed at Listing 3
and the produced output at Listing 2.

Logical Source. A Logical Source (rml:LogicalSource) extends
rrml’s Logical Table and is used to determine the input
source with the data to be mapped. The rrml Logical Table

Figure 1: Mapping sources without and with RML

http://semweb.mmlab.be/ns/rml#
http://semweb.mmlab.be/ns/rml#
http://semweb.mmlab.be/rml
http://semweb.mmlab.be/rml


{ ... "Performance" :
{ "Perf_ID": "567",
"Venue": { "Name": "STAM",

"Venue_ID": "78" },
"Location": { "long": "3.717222",

"lat": "51.043611" } } , ... }
<Events> ...
<Exhibition id="398">
<Venue> STAM </Venue>
<Location>
<lat>51.043611</lat>
<long>3.717222</long>

</Location>
</Exhibition> ... ...

</Events>

Listing 1: performances.json and exhibitions.xml
ex:567 ex:venue ex:78 ;

ex:location ex:3.717222,51.043611 .
ex:398 ex:venue ex:78 ;

ex:location ex:3.717222,51.043611 .
ex:3.717222,51.043611 ex:lat ex:3.717222

ex:long ex:51.043611.

Listing 2: The expected output.

definition determines a database’s table, using the Table Name

(rr:tableName). In the case of rml, a broader reference to any
input source is required. Thus, the Logical Source and source

(rml:source) are introduced respectively to specify the input.

Reference Formulation. rml needs to deal with different
data serialisations which use different ways to refer to their
elements/objects. But, as rml aims to be generic, not a
uniform way of referring to the data’s elements/objects is
defined. rrml uses columns’ names for this purpose. In the
same context, rml considers that any reference to the Logical

Source should be defined in a form relevant to the input data,
e.g. XPath for xml files or jsonpath for json files. To this
end, the Reference Formulation (rml:referenceFormulation) decla-
ration is introduced indicating the formulation (for instance,
a standard or a query language) used to refer to its data. At
the current version of rml, the ql:CSV, ql:XPath and ql:JSONPath

Reference Formulations are predefined.

Iterator. While in rrml it is already known that a per-
row iteration occurs, as rml remains generic, the iteration
pattern, if any, can not always be implicitly assumed, but it
needs to be determined. Thereafter, the iterator (rml:iterator)
is introduced. The iterator determines the iteration pattern
over the input source and specifies the extract of the data
mapped during each iteration. For example, the "$.[*]"

determines the iteration over a json file that occurs over the
object’s outer level. The iterator is not required in the case
of tabular sources as the default per-row iteration is implied
or if there is no need to iterate over the input data.

Logical Reference. A column-valued term map, according
to rrml, is defined using the property rr:column which deter-
mines a column’s name. In the case of rml, a more generic
property is introduced rml:reference. Its value must be a valid
reference to the data of the input dataset. Therefore, the
reference’s value should be a valid expression according to the
Reference Formulation defined at the Logical Source, as well as
the string template used in the definition of a template-valued
term map and the iterator’s value. For instance, the itera-

tor, the subject’s template-valued term map and the object’s
reference-valued term map are all valid jsonpath expressions.

Referencing Object Map. The last aspect of rrml that
is extended in rml is the Referencing Object Map. The join

condition’s child reference (rr:child) indicates the reference to
the data value (using an rml:reference) of the Logical Source

that contains the Referencing Object Map. The join condition’s
child reference (rr:parent) indicates the reference to the data
extract (rr:reference) of the Referencing Object Map’s Parent

Triples Map. The reference is specified using the Reference

Formulation defined at the current Logical Source. The join

condition’s parent reference indicates the reference to the
data extract (rml:reference) of the Parent Triples Map. The
reference is specified using the Reference Formulation defined
at the Parent Triples Map Logical Source definition. Therefore,
the child reference and the parent reference of a join condition

may be defined using different Reference Formulations, if the
Triples Map refers to sources of different format.

1 <#PerformancesMapping>
2 rml:logicalSource [
3 rml:source "http://ex.com/performances.json";
4 rml:referenceFormulation ql:JSONPath;
5 rml:iterator "$.Performance.[*]" ];
6 rr:subjectMap [ rr:template "http://ex.com/{Perf_ID}" ];
7 rr:predicateObjectMap [ rr:predicate ex:venue;
8 rr:objectMap [ rr:parentTriplesMap <#VenueMapping> ] ];
9 rr:predicateObjectMap [ rr:predicate ex:location;

10 rr:objectMap [ rr:parentTriplesMap <#LocationMapping> ] ].
11
12 <#VenueMapping>
13 rml:logicalSource [
14 rml:source "http://ex.com/performances.json";
15 rml:referenceFormulation ql:JSONPath;
16 rml:iterator "$.Performance.Venue.[*]" ];
17 rr:subjectMap [ rr:template "http://ex.com/{Venue_ID}" ].
18
19 <#LocationMapping>
20 rml:logicalSource [ ......... ];
21 rr:subjectMap [ rr:template "http://ex.com/{lat},{long}" ];
22 rr:predicateObjectMap [ rr:predicate ex:long;
23 rr:objectMap [ rml:reference "long" ] ]
24 rr:predicateObjectMap [ rr:predicate ex:lat;
25 rr:objectMap [ rml:reference "lat" ] ] .
26
27 <#ExhibitionMapping>
28 rml:logicalSource [
29 rml:source "http://ex.com/exhibitions.xml";
30 rml:referenceFormulation ql:XPath;
31 rml:iterator "/Events/Exhibition" ];
32 rr:subjectMap [ rr:template "http://ex.com/{@id}" ];
33 rr:predicateObjectMap [ rr:predicate ex:location;
34 rr:objectMap [ rr:parentTriplesMap <#LocationMapping> ] ];
35 rr:predicateObjectMap [ rr:predicate ex:venue;
36 rr:objectMap [ rr:parentTriplesMap <#VenueMapping>;
37 rr:joinCondition [
38 rr:child "$.Performance.Venue.Name";
39 rr:parent "/Events/Exhibition/Venue" ] ] ] .

Listing 3: An RML mapping definition.

5. RML PROCESSING
rml is highly extensible towards new source formats, al-

lowing different levels of support. On processing level that
adds some complexity as it demands the processor to be
scalable to support different input sources, in a uniform way.
To deal with these caveats, rml relies on expressions in a
target expression language relevant to the source format to
refer to the values of the sources while uses the rml syntax
for the rest of the mapping definition. This target expression
language needs to be tied to its format and should act as a
point of reference to the values in a source.

Expressions can be located wherever values need to be
extracted from the source (Term maps and rr:iterator) and
have to be valid according to the formulation specified in



the Triples Map (rr:referenceFormulation). In order to deal with
these embedded expressions, an rml processor is required
to have a modular architecture where the extraction and
mapping modules are executed independently of each other.
When the rml mappings are processed, the mapping module
deals with the mappings’ execution as defined at the mapping
document in rml syntax, while the extraction module deals
with the target language’s expressions.

Mapping Models
An RML processor can be implemented using two alternative
models: mapping-driven, data-driven or in a hybridic fashion
following any combination of the two solutions that turns
the processor to better perform.

Mapping-driven. In this model, the processing is driven
by the mapping module. The processor processes each Triples

Maps in a consecutive order. Based on the defined expres-
sion language, each Triples Map is delegated to a language-
specific sub-extractor. For each Triples Map, its delegated
sub-extractor iterates over the source data as the Triples

Map’s Iterator specifies. For each iteration the mapping mod-
ule requests an extract of data from the extraction module.
The defined Subject Map and Predicate-Object Maps are applied
and the corresponding triples are generated. The execution
of dependent Triples Maps, because of joins, is triggered by
the Parent Triples Map and a nested mapping process occurs.

Data-driven. In this model, the processing is driven by the
extractor module, namely the data sources. The proces-
sor extracts beforehand the iteration patterns, if any, from
the Triples Maps. Each defined dataset is integrated by its
language-specific sub-extractor. Based on the defined expres-
sion language and the iterator, each Triples Map is delegated
to a specific sub-mapper. For each iteration, a data extract is
passed to the processor, which in turn, delegates the extract
of data to the corresponding sub-mapper. The defined Subject

Map and Predicate-Object Maps are applied and the correspond-
ing triples are generated. The execution of dependent Triples

Maps, because of joins, is triggered by the Parent Triples Map

and a nested mapping-driven process occurs.

The efficiency of the processor can be increased by schedul-
ing the execution of the present expressions in an intelligent
way. The mapping-driven model allows the most straight-
forward implementation, since Triples Maps are processed
independently from each other. However, because of this,
avoiding multiple passes over the same dataset is difficult.
With execution planning, the number of file passes can be re-
duced to the bare minimum, but can not be one for all cases.
The data-driven model does not have this problem, since one
element of a single dataset can activate all related mappings.
The execution planning does become more complex, since all
dependencies have to be resolved beforehand. Note that we
deliberately ignore storing files into memory, which would
solve the multiple passes for the mapping-driven approach.
We only consider a streaming solution, since rml can be used
to process datasets too big for the processor’ s memory. We
accept a longer mapping time in trade of lower memory us-
age. A side-effect of a streaming approach, is the inability to
support some features of expression languages. For instance,
XPath has look-ahead functionality that requires access to
data which is not yet known. Thus, we can only support

a subset. Nevertheless, in practice, most of the expressions
only require functionality within this subset.

We created a prototype rml processor implementation in
Java based on the mapping-driven model which is available
at https://github.com/mmlab/RMLProcessor.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel approach for mapping

heterogeneous sources into rdf using the rml, an easily
extendable mapping language that significantly reduces the
effort for integrated mapping of heterogeneous resources. Our
proposed solution efficiently solves the limitations outlined
(Section 3.1) by addressing the factors presented (Section 3.2)
that could improve the dataset’ s integrity and their resources’
interlinking, incorporates the data publisher’s uri policy in a
well considered mapping policy. The per-format and per-file
mapping models followed so far get surpassed, leading to
contingent data integration and interlinking at a primary
stage. The language’s extensibility is self-evident as the
whole solution relies on the extension of the rrml mapping
language and arose in a progressive way, as it was initially
performed to accommodate mappings from the xml format
to the rdf data model and later on was re-used as such for
mappings of data appearing in json.

In the future, a thorough evaluation of rml’s efficiency and
effectiveness will be performed. Furthermore, rml can be
extended to support views on sources, built by queries. This
captures, to an extent, the issue of data cleaning and trans-
formation enhancing its applicability. Next, the efficiency of
rml processing can be improved. A possible optimization is
the use of execution plans that efficiently arrange the exe-
cution order depending on their dependencies. Finally, rml
could be used to specify the triples’ provenance, by taking
advantage of the rdf-nature of the mapping documents.

7. REFERENCES
[1] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and

A. Polleres. Mapping between RDF and XML with
XSPARQL. Journal on Data Semantics, 1(3):147–185, 2012.

[2] A. Dimou, M. Vander Sande, P. Colpaert, E. Mannens, and
R. Van de Walle. Extending rrml to a Source-independent
Mapping Language for rdf. In International Semantic Web
Conference (Posters and Demos), 2013.

[3] M. Hert, G. Reif, and H. C. Gall. A comparison of
RDB-to-RDF mapping languages. In Proceedings of the 7th
International Conference on Semantic Systems, I-Semantics
’11, pages 25–32. ACM, 2011.

[4] C. Lange. Krextor - an extensible framework for contributing
content math to the Web of Data. In Proceedings of the 18th
Calculemus and 10th international conference on Intelligent
computer mathematics, MKM’11, pages 304–306.
Springer-Verlag, 2011.

[5] A. Langegger and W. Wöß. XLWrap – Querying and
Integrating Arbitrary Spreadsheets with SPARQL. In
Proceedings of the 8th International Semantic Web
Conference, ISWC ’09, pages 359–374. Springer-Verlag, 2009.

[6] M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen.
Mapping Master: a flexible approach for mapping
spreadsheets to OWL. In Proceedings of the 9th International
Semantic Web Conference on The Semantic Web - Volume
Part II, ISWC’10, pages 194–208. Springer-Verlag, 2010.

[7] F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Villata,
B. Bucher, F. Hamdi, L. Bihanic, G. Képéklian, F. Cotton,
J. Euzenat, Z. Fan, P.-Y. Vandenbussche, and B. Vatant.
Enabling Linked Data publication with the Datalift platform.
In Proc. AAAI workshop on semantic cities, 2012.

https://github.com/mmlab/RMLProcessor

	Introduction
	Related Work
	Mappings Methodology
	Limitations of current mapping methods
	Requirements for generic mappings

	RML Mapping language
	R2RML
	RML

	RML Processing
	Conclusions and future Work
	References

