
AIDA-light:
High-Throughput Named-Entity Disambiguation

Dat Ba Nguyen
Max Planck Institute for

Informatics
datnb@mpi-inf.mpg.de

Johannes Hoffart
Max Planck Institute for

Informatics
jhoffart@mpi-inf.mpg.de

Martin Theobald
University of Antwerp
martin.theobald

@uantwerpen.be

Gerhard Weikum
Max Planck Institute for

Informatics
weikum@mpi-inf.mpg.de

ABSTRACT
To advance the Web of Linked Data, mapping ambiguous
names in structured and unstructured contents onto knowl-
edge bases would be a vital asset. State-of-the-art methods
for Named Entity Disambiguation (NED) face major trade-
offs regarding efficiency/scalability vs. accuracy. Fast meth-
ods use relatively simple context features and avoid compu-
tationally expensive algorithms for joint inference. While
doing very well on prominent entities in clear input texts,
these methods achieve only moderate accuracy when fed
with difficult inputs. On the other hand, methods that
rely on rich context features and joint inference for map-
ping names onto entities pay the price of being much slower.

This paper presents AIDA-light which achieves high accu-
racy on difficult inputs while also being fast and scalable.
AIDA-light uses a novel kind of two-stage mapping algo-
rithm. It first identifies a set of “easy” mentions with low
ambiguity and links them to entities in a very efficient man-
ner. This stage also determines the thematic domain of the
input text as an important and novel kind of feature. The
second stage harnesses the high-confidence linkage for the
“easy” mentions to establish more reliable contexts for the
disambiguation of the remaining mentions. Our experiments
with four different datasets demonstrates that the accuracy
of AIDA-light is competitive to the very best NED systems,
while its run-time is comparable to or better than the per-
formance of the fastest systems.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

Keywords
Entity Linking, Named Entity Disambiguation, Joint Infer-
ence, Scalability

Copyright is held by the author/owner(s).
LDOW2014, April 8, 2014, Seoul, Korea.

1. INTRODUCTION

1.1 Motivation and Approach
The Web of Linked Data [11] provides a wealth of data

and knowledge sources that are richly interlinked at the en-
tity level. The data itself is uniformly represented as RDF
triples. However, RDF data can also be embedded in Web
pages with surrounding text, and the Web also contains a
huge amount of semi-structured contents like user-created
HTML tables within Web pages. To further grow the Web
of Linked Data and advance its value for semantic appli-
cations, we propose to consider also unstructured and semi-
structured contents, detect names of embedded entities, and
link these to knowledge bases like DBpedia, Freebase, or
YAGO.

In computational linguistics, the problem of mapping am-
biguous entity mentions (or just mentions for short) oc-
curring in natural-language texts onto a set of known tar-
get entities is referred to as Named Entity Disambiguation
(NED). State-of-the-art NED methods [3] face major trade-
offs regarding output accuracy vs. run-time efficiency and
scalability. Fast methods, like TagMe2 [7], Illinois Wiki-
fier [20] or DBpedia Spotlight [17, 5] use relatively simple
contextual features, and avoid combinatorially expensive al-
gorithms that use collective inference for jointly mapping
all mentions in a text. These methods perform very well on
straightforward input texts about prominent entities; how-
ever, on very difficult inputs with highly ambiguous names
and mentions of long-tail entities, the accuracy of these
methods is only moderate. On the other hand, more so-
phisticated methods that rely on rich contextual features
such as key phrases and on joint-inference algorithms, such
as AIDA [14, 12], tend to be much slower and thus face
scalability limitations.

Based on our prior experience with AIDA, this paper re-
considers the design space of possible context features and
mapping functions, in order to develop an NED system that
achieves both high throughput and high output accuracy.
We present the AIDA-light system that performs very well
even on difficult input texts, while also being as efficient
as the fastest methods. AIDA-light employs simpler fea-
tures than AIDA, thus reducing computational cost, and
also adds a new kind of feature: thematic domains like pop
music, football, skiing, etc. A major novelty of AIDA-light

is its two-stage mapping algorithm: First, our method iden-
tifies a set of “easy” mentions which exhibit low ambiguity
and can be mapped onto entities with high confidence. The
second stage harnesses this intermediate result by inferring
the primary domain of the input text and uses this as an
additional feature to establish more reliable contexts for the
remaining, more difficult, mentions.

Running Example. Consider the following natural-language
input sentence as a running example:

“Under Fergie, United won the Premier League title 13 times.”

It is obvious that the above mentions of“Fergie”and“United”,
with hundreds of candidate entities, are more ambiguous
than the mention of “Premier League”, which exhibits just
a few candidate entities when using a DBpedia/Wikipedia-
based set of target entities. So the risk of disambiguating the
mention “Premier League” incorrectly is fairly low. More-
over, once we fix this mention to the entity Premier_League,
the English professional football league, we can infer that
the above text snippet likely (and primarily) relates to the
general domain of “Football”. Within the context of this
domain, it thus becomes easier to map“United”to the entity
Manchester_United_F.C. (rather than to United_Airlines)
and “Fergie” to the entity Alex_Ferguson (rather than to
Fergie_(singer) or Sarah,_Duchess_of_York).

1.2 State of the Art
Bunescu and Pasca [2] were the first to investigate the

usage of a Wikipedia-based set of target entities by defin-
ing a similarity measure that compares the textual context
of a mention to the Wikipedia categories associated with
each entity candidate. This initial idea was later extended
by using richer features for the similarity comparison [4, 10,
18]. In particular, instead of using the similarity function
directly, Milne [18] introduced a supervised learning step to
better estimate the weights of the underlying feature func-
tions from labeled training data. Milne [18] also added a
notion of semantic relatedness between candidate entities
among unambiguous mentions. However, these approaches
are still limited to mapping each mention individually and
iteratively. That is, their disambiguation objective does not
consider any mutual (i.e., joint) dependencies among the
possible target entities.

Collective-learning models perform a joint mapping of all
mentions [16, 14, 12] onto their matching target entities “in
one shot”. These approaches typically yield the highest NED
accuracy for difficult input texts. Because of the high combi-
natorial cost for the joint mapping (which typically leads to
NP-hard problems), finding an exact solution to this objec-
tive is prohibitive. To relax the problem—and due to sparse-
ness of the available training data—the above methods build
a graph with edges or “factors” for mention-entity pairs and
entity-entity pairs. Even when considering only pairs of tar-
get entities, finding the most likely mapping over the joint
probability distribution of all mappings in a probabilistic
interpretation (a form of Maximum-A-Posteriori (MAP) in-
ference [20]) remains an NP-hard optimization problem [4].
Therefore, various approximations and variations have been
developed [14, 20, 12].

In addition, some of these high-accuracy NED methods
also face high computational cost due to their rich contextual
features, most notably, key phrases of entities, entity-entity
relatedness measures, and corresponing statistics [14, 20].

This prevents such techniques from being applied to Web-
scale corpora.

Fast NED methods, on the other hand, use simpler fea-
tures, for example, only characteristic words and precom-
puted statistics. By the more compact feature space, they
also avoid interacting with databases and instead use cus-
tomized in-memory data structures. The probably fastest
publicly available NED systems are TagMe [7] and Spot-
light [17, 5]. TagMe uses a light-weight form of coherence
by averaging relatedness scores over all candidate entities
for a mention that co-occurs with a given mention. These
scores are precomputed for NED throughput. Spotlight uses
word-level statistics to estimate the probability of an entity
given the context of a mention. This is combined, in a prob-
abilistic manner, with prior distributions on entity names
and entity prominence. Compared to full-fledged collective-
inference methods, this approach is much more light-weight
by avoiding key phrases and relatedness measures over entity
pairs.

1.3 Contributions
We summarize the novel aspects of this work as follows.

• AIDA-light makes a judicious choice of contextual features
to compute pairwise mention-entity and entity-entity sim-
ilarities. These feature functions allow us to store the
underlying context statistics with low memory footprint,
which contributes to faster processing.
• AIDA-light is the first approach that harnesses a thematic

domain hierarchy to capture measures for domain-entity
and entity-entity coherence.
• AIDA-light employs a novel two-stage algorithm in which

we determine the “easy and low-cost” mappings first. By
doing so, we reduce both the complexity and difficulty of
the second-stage disambiguations.
• AIDA-light is a complete system for NED, which is or-

ders of magnitude faster than AIDA while achieving com-
parable output quality. Our experimental comparisons
against AIDA, Spotlight, and Illinois Wikifier show that
AIDA-light is consistently close to the best competitor (or
is even the best) in terms of both run-time and accuracy.

2. SYSTEM ARCHITECTURE
As shown in Figure 1, AIDA-light focuses on the disam-

biguation of named-entity mentions in natural-language in-
put texts such as news articles, Web pages and Wikipedia
articles. We assume that the mentions in the input text have
been recognized and annotated by an NER tool, such as the
Stanford tagger [8] or a similar annotation tool.

In its first processing stage, AIDA-light divides the se-
quence of mentions as they have been marked in the input
text into two parts using its mention partitioner component.
This form of partitioning is based on the number of possi-
ble candidate entities each of the mentions can be mapped
to in the background KB. At this stage, we thus focus on
detecting easy mentions, i.e., those mentions with very few
candidate entities, which exhibit a low level of ambiguity
and thus can be mapped to the correct target entity with
high confidence. Once these easy mentions are fixed to their
respective sets of target entities, the more general domain
of the input text is discovered via the entity-domain dic-
tionary. For example, if there are multiple occurrences of
football clubs in the text snippet, then the text likely re-
lates to the domain “Football”. The chosen target entities

(a) The system architecture. (b) The collective mapping algorithm [14].

Figure 1: The overview of AIDA-light .

as well as their domains are added to the mention context
of the remaining, still ambiguous mentions. Finally, the de-
tailed similarities (e.g., mention-entity context similarities)
are recomputed for the second stage of disambiguation. At
this stage, our collective mapping algorithm performs the
disambiguation of the remaining mentions using the set of
feature functions described in Section 3.

Figure 2 illustrates how AIDA-light processes our earlier
example sentence “Under Fergie, United won the Premier
League title 13 times.” After the preprocessing steps (includ-
ing tokenization and NER) are performed, a sliding window
is contiguously moved over the resulting token and mention
sequences, thus keeping the current mention that is about
to be disambiguated at the center of the window. Hence,
for each further mention that we disambiguate, this window
is moved forward. Both surrounding tokens and mentions
within this window are taken into the context of this central
mention. We remark that in this example, some interme-
diate results are hidden. For example, the tokenizer (e.g.
Stanford tokenizer) splits “Premier League” into two tokens
“Premier” and “League”; however, these two tokens create a
mention based on the results of NER, and thus AIDA-light
only considers this phrase as a single unit. As shown in the
figure, the ambiguities of the three mentions in our example
sentence vary substantially. The mention “Premier League”
is mapped to only very few candidate entities (even just to
one in this example). Thus, we obtain a high-confidence dis-
ambiguation of this mention to the entity Premier_League.
Thanks to this entity and the domain hierarchy, which maps
an entity to its respective domains (such as football, politics,
etc.), AIDA-light is able to predict that the text relates to
the domain “Football”. As a result, it is now much easier
to choose also the correct entities for the other mentions,
for example, to map the mention of “United” to the entity
Manchester_United_F.C. rather than to United_Airlines.

3. FEATURE MODEL
As mentioned before, AIDA-light employs a combination

of various feature functions to perform NED via a two-stage
mapping algorithm. Specifically, we investigate the usage of
seven different feature functions that indicate either

1) the likelihood of a mention M within its given textual
context to represent a named entity E out of a set of
known entities E in our background KB, or

2) the coherence (i.e., the semantic similarity) of a pair of
entity candidates E1,E2 ∈ E with respect to this KB.

These feature functions, which are defined in detail in the
following subsections, partly consist of simplified context
features used in AIDA (e.g., using sets of plain key tokens
instead of sets of key phrases as in [14]). In addition, we
employ two novel features, which are based on a predefined
domain hierarchy and the Wikipedia category system with
which the candidate entities are associated.

3.1 Preprocessing Steps
Token Sequences. We start by tokenizing a given input
text into a token sequence T = 〈T1, . . . , Tt〉 of white-space
and punctuation separated terms. All tokens used as in-
put for our context features are stemmed using the Porter
stemmer. This token sequence serves as input to the various
context features employed by the disambiguation algorithm.

Mention Sequences. We assume that a subset T′ ⊆ T
of these tokens has been annotated as a sequence of men-
tions M = 〈M1, . . . ,Mm〉 by an auxiliary NER tool (using,
e.g., the Stanford [8] or Illinois [19] taggers). Formally, we
designate an annotator function NER : T→ M for this pur-
pose, which allows us to obtain the mention Mj := NER(Ti)
that is associated with a given token Ti (or null if Ti is not
associated with any mention).

Mention Dictionary. In addition to the NER func-
tion, we also assume the availability of a dictionary function
Dict : M → 2E that identifies the set of candidate entities
Ej ⊆ E for a given mention Ej := Dict(Mj) to be provided as
input to our NED algorithm. Just like AIDA [14, 12], AIDA-
light employs the means relation of YAGO21 to identify this
set of candidate entities for a (possibly ambiguous) men-
tion Mj . The entries in the dictionary were extracted from
link anchors, disambiguation pages and redirection links in
Wikipedia.

Dictionary Augmentation via LSH. In order to im-
prove recall over a variety of input texts, including Web

1
YAGO2.4.0 - http://www.mpi-inf.mpg.de/yago-naga/yago/

Figure 2: AIDA-light processing of sample sentence.

pages where many out-of-dictionary mentions occur, we ap-
ply Locality Sensitive Hashing (LSH) in combination with
a min-wise permutation scheme [9, 15, 1] to cover more
spelling variations among these mentions. That is, once an
out-of-dictionary mention occurs, AIDA-light first attempts
to find similar mentions for it via LSH. Second, all possible
entity candidates of these similar mentions are assigned to
this mention as candidate entities. Let us take the men-
tion “Northwest Fur Company” as an example. This men-
tion does not exist in the means relation of YAGO2, and
thus there is no entity candidate for it. However, via LSH
we are able to detect that “Northwest Fur Company” and
the dictionary entry “North West Fur Company” are highly
similar, such that AIDA-light is able to identify the entity
North_West_Company as a candidate entity for this mention.
KORE [12] is the first work that integrated LSH into an
NED system to cluster key-phrases for an efficient form of

similarity computation. Our work touches upon another im-
portant issue, which is to deal with the lack of dictionary
resources in an NED system.
We remark that, according to the above definitions, two or
more mentions, which are represented by identical tokens
occurring at different locations in the input sequence may
be mapped to different entities. That is, the same annotated
name may very well be disambiguated to different meanings
if this name occurs at different positions of the input text.

We next explain how we maintain the contexts of both
mentions and candidate entities which form the basis for
the actual disambiguation step.

3.1.1 Mention Context

The mention context is extracted from the annotated text
snippet T that contains a mention Mj which we aim to
disambiguate. For both efficiency and robustness reasons,

this mention context is limited to a sliding window M′ =
〈Mj−k, . . . ,Mj , . . . ,Mj+k〉 with 2 k + 1 mentions that sur-
round Mj . Similarly, we consider also a sliding window
T′ = 〈Ti−l, . . . , Ti, . . . , Ti+l〉 of 2 l + 1 tokens surrounding
Mj , such that Mj = NER(Ti).

Domains. Within such a mention context, each candidate
entity E ∈ E may be assigned to (i.e., be mapped to) zero or
more domains via a domain function Dom : E → 2D. This
set of domains D consists of the collection of 46 manually
selected classes 2 (such as “Football”) of the subclassOf hi-
erarchy of YAGO2 shown in Figure 3. As inherited from the
original subclassOf relation, these 46 domains form a DAG
structure.

In the first stage of the NED algorithm, both neighboring
tokens and mentions that fall within their respective sliding
windows are taken into account by our disambiguation al-
gorithm. Later, as the algorithm proceeds from its first to
its second stage, the context of a mention might hold extra
information such as the domains that the neighboring men-
tions under this context are associated with. At the first
stage, however, these domains are unknown, and the itera-
tive mapping described in Section 4.2, updates the mention
contexts after the first round by the set of chosen entities
and their respective domains.

3.1.2 Entity Context
In analogy to the mention context, the entity context is

used to describe each entity E out of the set of known entities
E with respect to a given background KB such as YAGO2.
We focus on two main components for this purpose. The
first is a set of key tokens extracted from all the key phrases
provided by AIDA for the respective entity. The second
component consists of a set of Wikipedia categories which
is again obtained from YAGO2 as the background KB.

Key Tokens. Each entity E ∈ E is assigned to zero or more
key tokens of type string via a token function Tok : E →
2string . These tokens are obtained by simplifying the key
phrases provided by AIDA [14] for each entity in YAGO2.
For example, the set consisting of the two key phrases {“U.S.
President”, “President of the U.S.” } in AIDA is reduced to
the set of key tokens { “president”, “U.S.” } in AIDA-light.

Wikipedia Categories. Additionally, each entity E ∈
E is assigned to zero or more Wikipedia categories via a
category function Cat : E → 2C. These categories C are
obtained from the type relation of YAGO2 (such as wiki-

category:English_footballers) which thus form the leafs
in the type system in the YAGO2 knowledge base.

Both of these components together form the basis for
defining the pairwise coherence of two entities, or the pair-
wise similarity between a mention and an entity if the do-
mains are known, respectively.

3.2 Basic Feature Functions
For the following steps, we consider only sets of candi-

date entities Ei = Dict(Mi). That is, we consider only

2
The 46 domains: badminton, baseball, basketball, cricket, foot-

ball, golf, table tennis, rugby, soccer, tennis, volleyball, cycling,
skating, skiing, hockey, mountaineering, rowing, swimming, sub,
diving, racing, athletics, wrestling, boxing, fencing, archery, fish-
ing, hunting, bowling, agriculture, alimentation, architecture,
computer science, engineering, medicine, veterinary, astronomy,
biology, chemistry, earth, mathematics, physics, economy, fashion,
industry, politics.

for those mentions Mi that occur in the mention context
M′ = 〈Mj−k, . . . ,Mj , . . . ,Mj+k〉 of a mention Mj that is
about to be disambiguated. Moreover, these mentions need
to match an entry in our mention dictionary as described
earlier. Both these points help us to significantly reduce the
amount of candidate entities for a given mention.

3.2.1 Prior
The function prior reflects the likelihood that a mention

Mi refers to an entity Ei,j with respect to the link structure
of Wikipedia. It is thus defined as the relative frequency
with which a link with anchor Mi points to a Wikipedia
article representing entity Ei,j .

∀Mi ∈ M′, ∀Ei,j ∈ Ei := Dict(Mi) :

f1(Mi, Ei,j) := prior(Mi, Ei,j)

:=
count(Mi → Ei,j)

count(Mi)
(1)

The respective counts are obtained from a recent WikiMedia
dump of English Wikipedia articles3. Each such count is
normalized by the number of times Mi occurs as an anchor
among all links in Wikipedia. It thus produces a real value
in the range [0, 1].

3.2.2 Mention-Name Similarity
The similarity between a mention (e.g., “Obama”) and an

entity name (e.g., Barack_Obama) is measured by the Jaccard
similarity over 3-gram character sequences extracted from
the respective mention and entity strings.

∀Mi ∈ M′, ∀Ei,j ∈ Ei := Dict(Mi) :

f2(Mi, Ei,j) := Jaccard(Mi, Ei,j)

:=
|3 -grams(Mi) ∩ 3 -grams(Ei,j)|
|3 -grams(Mi) ∪ 3 -grams(Ei,j)|

(2)

White-spaces and truncators (such as “ ”) are removed from
the input strings before the 3-grams are generated. Hence,
Jaccard also produces a real value between 0 and 1.

3.2.3 Context Similarity
The function context similarity defines how similar the

token context T′ = 〈Ti−l, . . . , Ti, . . . , Ti+l〉 surrounding a
mention Mi and the key tokens Tok(Ei,j) of an entity can-
didate Ei,j are.

∀Mi ∈ M′, ∀Ei,j ∈ Ei := Dict(Mi) :

f3(Mi, Ei,j) := Overlap(T′,Tok(Ei,j))

:=
|T′ ∩ Tok(Ei,j)|

min(|T′|, |Tok(Ei,j)|)
(3)

It is thus estimated as the overlap coefficient of tokens ex-
tracted from the mention context T′ and the key tokens
Tok(Ei,j) (thus using word stems as tokens and excluding
stopwords). It produces a real value between 0 and 1.

3.2.4 Surrounding Mention Coherence
This feature function measures the semantic coherence

among mentions Mt within the context of a mention Mi

which we aim to disambiguate. Thus, given the mention
context M′ = 〈Mi−k, . . . ,Mi, . . . ,Mi+k〉 that is surrounding
a mention Mi, this feature function computes the pairwise
coherence between Mi and the remaining mentions Mt ∈ M,
t 6= i, based on their co-occurrence counts in Wikipedia.

3
http://dumps.wikimedia.org/enwiki/20130103/

For example, if there is a pair of mentions “Victoria” and
“David Beckham”, then “Victoria” tends to be mapped to
Victoria_Beckham and“David Beckham”to David_Beckham,
respectively.

∀Mi ∈ M′, ∀Ei,j ∈ Ei := Dict(Mi) :
f4(Mi, Ei,j) := Coherence(Mi, Ei,j)

:=

∏
Mt∈M′,t6=i

co-occurrence count(Mt, Ei,j)

count(Mt)∑
Ei,u∈Ei

∏
Mt∈M′,t6=i

co-occurrence count(Mt, Ei,u)

count(Mt)

(4)

This features thus resembles the conditional probability
P (Ei,j |Mt) that an entity Ei,j occurs when we are given
a surrounding mention Mt. In YAGO2, this probability is
again estimated over an English Wikipedia dump by count-
ing how many times entity Ei,j and mention Mt occur to-
gether in an article. This count is normalized by the absolute
number of times mention Mt occurs (i.e., using count(Mt))
in all articles. In order to avoid counts of zero, we apply a
simple smoothing technique for our implementation by as-
signing 1 to unseen mention-entity pairs. This already pro-
duces a real value from 0 to 1. However, it is quite small in
most cases. And thus, we apply a linear normalization to all
values among the candidate set Ei of a mention.

3.2.5 Entity-Entity Context Coherence
The entity-entity context coherence function finally re-

flects the pairwise relatedness between the two entities via
their key tokens sets Tok(Ei,j) and Tok(Et,v).

∀Mi,Mt ∈ M′, ∀Ei,j ∈ Ei := Dict(Mi),
∀Et,v ∈ Et := Dict(Mt) :

f6(Ei,j , Et,v) := Overlap(Tok(Ei,j),Tok(Et,v))

:=
|Tok(Ei,j) ∩ Tok(Et,v)|

min(|Tok(Ei,j)|, |Tok(Et,v)|) (5)

It is once more computed as the overlap coefficient of two
key tokens sets. It produces a real value from 0 to 1.

3.3 Domain-Oriented Feature Functions

3.3.1 Domain Hierarchy
Despite the obvious usefulness of Wikipedia categories for

estimating the coherence of two entities or the coherence of
an entity and a domain, there—so far—has not been much
work investing this particular issue. We thus propose to
build hierarchies between Wikipedia categories (instances
of the type relation) and domains (leafs in the subclassOf
relation system). Both kinds of semantic relations are avail-
able in YAGO2 [13] via the yagoWordnetDomains and word-
netDomainHierarchy relations4. That is, a Wikipedia cat-
egory is first mapped to its WordNet [6] type, and it is
then traced back to a more generic domain in one of the 46
domains, such as “Sports” (including football, basketball,
etc.), “Science” (including computer science, mathematics,
etc.), and so on, which are second-level nodes in the wordnet-
DomainHierarchy relation in YAGO2. Note that, we manu-
ally removed overly generic (and thus noisy) domains, such
as the “Person” domain, which is associated with the wi-

kicategory:Living_people category in Wikipedia and thus
spans multiple of the aforementioned domains.

4
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html

Figure 3: A Wikipedia category hierarchy for the
“Football” domain.

Once these hierarchies (as shown in Figure 3) are built,
the coherence between two such domains, or between a cat-
egory and a domain, can be computed as the inverse of the
length of the shortest path between them in this hierarchy.
In addition, this feature may help to predict the domain of
the input text when some of the mentions with low ambi-
guity are already fixed to entities, which results in a better
local similarity estimation for the remaining, more ambigu-
ous mentions. For example, if a number of “easy mentions”
have been mapped to soccer players, clubs or leagues, we can
predict that the text likely relates to the domain“Football”.

3.3.2 Domain-Entity Coherence
The domain-entity coherence function reflects the (binary)

relevance of assigning an entity to one of the predefined do-
mains (e.g., “Football”).

∀Mi ∈ M′, ∀Ei,j ∈ Ei := Dict(Mi),Domains D :

f5(Mi, Ei,j) :=

 1 ∃D ∈ D ∧ Ei,j ∈ D

0 otherwise
(6)

In case a chosen entity candidate Ei,j belongs to one of our
predefined domains D, we are thus able to take the coherence
between this entity candidate and the domain hierarchy into
account. This feature function only produces a binary value
of 0 or 1, which reflects whether there is a domain D ∈ D
holding Ei,j , or not.

3.3.3 Entity-Entity Category Coherence
When using both YAGO2 or DBpedia 3.8 as background

KB, Wikipedia categories (such as wiki-category:English_
footballers or wiki-category:FIFA_World_Cup) may pro-
vide good hints on the coherence among pairs of entities,
especially for long-tail entities with otherwise poor context
information. The entity-entity category coherence function
thus estimates the relatedness between the two entities via
their assigned Wikipedia categories Cat(Ei,j) and Cat(Et,v).

∀Mi,Mt ∈ M′, ∀Ei,j ∈ Ei := Dict(Mi),
∀Et,v ∈ Et := Dict(Mt) :
f7(Ei,j , Et,v) := Coherence(Cat(Ei,j),Cat(Et,v)) (7)

:= max
Ci,j ,x∈Cat(Ei,j)

Ct,v,y∈Cat(Et,v)

1

Distance(Ci,j ,x ,Ct,v,y)

Here, the function Distance of two categories is computed
as the shortest path between them in a domain hierarchy D.

It is computed as the maximum coherence over all pairs of
Wikipedia categories the two candidate entities belong to.
The coherence of a category pair can be computed by using
the domain-hierarchy described above. It produces a real
value from 0 to 1.

3.4 Objective Function
To aim for a robust disambiguation algorithm, we com-

bine the seven individual feature functions described above
into a single objective function (all functions except prior
are computed at runtime). In doing so, we disambiguate
the entire sequence of mentions occurring in an input docu-
ment jointly. Thus let MD = 〈M1, . . . ,Mk〉 denote this se-
quence of mentions occurring in the input document, and let
ED = 〈E1, . . . , Ek〉, Ei ∈ Dict(Mi), denote its corresponding
set of disambiguated entities. We select exactly one entity
candidate Ei for each mention Mi ∈ MD, i = 1..k subject
to the following optimization objective NED : 2M → 2E.

NED(〈M1, . . . ,Mk〉) := 〈E1, . . . , Ek〉
:= argmaxE1∈Dict(M1)×···×Ed∈Dict(Mk)∑
j=1..5
i=1..k

pj fj(Mi, Ei) +
∑

j=6..7
t=1..k
v=1..k
t 6=v

pj fj(Et, Ev) (8)

such that
∑

j=1..5

pj = 1 and p6 + p7 = 1.

The first five feature functions f1, ..., f5 thus reflect the like-
lihood of choosing an entity based on the respective mention
and entity contexts, while functions f6 and f7 compute the
pairwise coherences among the chosen entities.

We remark that, as described before for the feature func-
tions, the mention context for each mention Mi ∈ MD still
is based on a sliding window of mentions M′ and tokens T′
surrounding that mention (see Section 3.1.1).

4. DISAMBIGUATION ALGORITHM
We construct a weighted, undirected dependency graph

whose nodes are formed by all mentions and their candidate
entities, and whose weighted edges are created by the fea-
ture functions described in the previous section [14]. Con-
sequently, the objective function described in Section 3.4
is solved by finding the best subgraph where each men-
tion is mapped onto only one entity candidate. This dense-
subgraph problem is known to be NP-hard [21] as it gener-
alizes the well-studied Steiner-tree problem. We thus adopt
the greedy approximation algorithm proposed in [14] and
extend it into a new, two-stage disambiguation algorithm.

4.1 Entity-Mention Dependency Graph
The mention-entity dependency graph (see Figure 1 for

an example) is typically dense on the entity side, often hav-
ing hundreds or thousands of nodes because there might be
many candidate entities for common mentions (e.g., com-
mon first names, last names, etc.). Therefore, in order to
stay efficient, we first propose to keep at most k of the best
entity candidates for each mention in the graph. Thanks
to the multi-phase computation (see the next subsection),
which iteratively updates the context and thus gives a bet-
ter initial mention-entity similarity estimation, this cut-off
at the top k (even with fairly small values of k, e.g., k = 5)
does not affect accuracy too much. Second, an entity node
which is not the last remaining candidate entity of a mention

Algorithm 1 Collective Mapping Algorithm.

Require: Weighted dependency graph of mentions and en-
tities.

Ensure: Best sub-graph with one edge per mention.
1: //build the graph
2: for each mention M do
3: for each candidate entity Ei of mention M do
4: sim(M,Ei) :=

∑
t=1..5

ptft(M,Ei); //local similarity

5: end for
6: Keep the k best candidates, drop the others;
7: end for
8: for each candidate entity Ei of mention M do
9: Wi := sim(M,Ei); //init weight

10: for each entity Ej not generated from mention M do
11: //compute coherence
12: coh(Ei, Ej) := p6f6(Ei, Ej) + p7f7(Ei, Ej);
13: Wi += coh(Ei, Ej); //update weight
14: end for
15: end for
16: /*an entity is non-taboo if it is not the last candidate of
17: a mention*/
18: while graph has non-taboo entity do
19: Determine non-taboo entity node with lowest weight,

remove it and all its incident edges;
20: Recompute the weights;
21: end while

(and hence a “non-taboo” node), and which holds the cur-
rently smallest weighted degree, is iteratively removed from
the mention-entity graph as shown in Algorithm 1.

4.2 Two-Stage Computation
Current NED approaches either map each mention sepa-

rately in a “context-free” manner, which cannot capture the
intricate coherences among entities, or they map all men-
tions together in an expensive joint-mapping step. However,
in practice the level of ambiguity of various mentions occur-
ring in a text snippet often varies substantially. Often, there
are mentions which are not very difficult to disambiguate
because of the very few candidates (e.g., less than 4 candi-
dates based on our experiments) that come into question for
them. We thus propose to organize the mapping algorithm
into 2-stage computation as shown in Algorithm 2.

For each stage of the disambiguation algorithm, we apply
the collective mapping algorithm described in the previous
subsection by using the 7 features functions from Section 4.1.
The unknown context-related domains D′ in the first stage
does not affect the algorithm because the corresponding fea-
ture function f6 only returns 0. The multi-phase computa-
tion not only helps to reduce the complexity of collective
mapping algorithm but it also contributes to a better local
similarity estimation for “highly ambiguous” mentions (in
the second stage) by updating the mention contexts such as
context-related domains or already chosen entities (from the
first stage).

5. EXPERIMENTS

5.1 Setup
Test corpora. We conducted experiments for four dif-

ferent test corpora, with different characteristics:

Algorithm 2 Multi-Phase Computation.

Require: Sequence of mentions M′;
1: Initialize context-related domains D′ := ∅;
2: Find sets Ei = Dict(Mi), Mi ∈ M′, of “easy mentions”

such that |Ei| ≤ 4;
3: Jointly disambiguate sets of candidate entities for these

easy mentions using Algorithm 1 and let M′′ ⊆ M′ de-
note the set of mentions disambiguated after the first
stage;

4: for each domain D ∈ D do
5: if at least half of the entities chosen in the first stage

relate to D then
6: add D to D′;
7: end if
8: end for
9: Recompute the mention-entity similarities;

10: Disambiguate M′ −M′′ using Algorithm 1;

• CoNLL-YAGO: The CoNLL-YAGO testb corpus was
originally used in [14]. It is based on the CoNLL 2003
dataset, which consists of 231 news articles (4485 men-
tions) with an average article length of 216 words. There
are long-tail entities in form of short mentions, which
challenges NED systems to get high precision on it. For
example, it is challenging to map the mention “Japan”
in the sentence “SOCCER- Japan get lucky win.” to the
right entity Japan_national_football_team, not to the
prominent entity Japan.
• WP: The WP corpus [12] consisting of 2019 difficult sen-

tences (10318 mentions) is a specific sample from Wikipedia
articles, with emphasis on short context (52 words on av-
erage) and highly ambiguous mentions and long-tail en-
tities. Let’s take the text mentioning AC/DC band as an
example:
“Johnson, Young, Rudd, Young and Williams, live in
Tacoma, Washington, 31 August 2009.”
These short person names with hundreds of entity can-
didates are hard for any current NED systems to deal
with.
• Wiki-links: We randomly extracted a subset of the Wiki-

links dataset 5, consisting of 10665 annotated articles
(21643 mentions) with an average article length of 5344
words. They are web-pages in a number of websites in-
cluding blogspot 6, livejournal 7, etc. Note that in this
dataset, the annotated mentions are limited to href an-
chor texts that point to a Wikipedia page. This way, each
article has only a marked-up mentions (often only one or
two), although many additional entities are mentioned in
the text. Moreover, most annotated mentions refer to
prominent entities.
• Wikipedia articles: We randomly extract 153 Wikipedia

featured articles 8, with a total of 19264 mentions and an
average article length of 9487 words. This corpus covers
a variety of topics such as football (Arsenal_F.C page),
entertainment (Batman page), people (John_Calvin
page), etc.

5
http://code.google.com/p/wiki-links/

6
http://abdallahhouse.blogspot.de

7
http://www.livejournal.com/

8
http://en.wikipedia.org/wiki/Wikipedia:Featured_articles

For each of these four NED tasks, ground truth is given, ei-
ther by manual annotation or by the href links in Wikipedia
(which, of course, are not given to the NED methods). In
all cases, we consider only mentions that refer to individual
entities like people, organizations, places, events, etc. We
disregard text phrases that refer to general concepts such
as “peace”, “harmony”, “logic”, “statistics”, etc. In so-called
Wikification tasks, such as TAC KBP Entity Linking, all
Wikipedia articles are considered as targets, including gen-
eral concepts. For the Web of Linked Data and this paper’s
emphasis on NED, this does not make sense; hence our focus
on individual entities. We implement this restriction by con-
sidering only mentions with ground-truth entities that are
in both Wikipedia and YAGO (as YAGO does not include
general concepts of the above kind).

Parameters. The parameters p1 . . . p7 to combine AIDA-
light ’s feature functions were manually tuned with the goal
of maximizing the precision of AIDA-light on CoNLL-YAGO
testa training corpus. Plus, based on our experiments, we
chose a sliding window of 11 sentences (5 sentences before,
5 sentences after and the sentence holding the mention) to
extract the context of a mention.

Performance measures. Our measure for output qual-
ity is the per-mention precision: the fraction of mentions
that are correctly mapped to the proper entities. When a
system has a choice of abstaining on a difficult mention by
reporting “null” although the proper entity is in the knowl-
edge base, we count this as a false mapping. Alternatively,
we could count precision only on the non-null entities, and
additionally consider the correctly mapped fraction of all
entities as recall. However, our notion of precision captures
both of these aspects in a single metric.

Our measure for efficiency is the run-time, measured in
single-threaded mode with cold caches on a server with 8
(+8 in hyper-threading mode) Intel Xeon CPUs at 2.4GHz
and 48GB of memory.

Systems under comparison. We compared AIDA-light
against the following state-of-the-art methods:
• AIDA [14, 12]: using rich features stored in a SQL database;
• Spotlight [17, 5]: statistical version without using any

thresholds to get as many entities as possible.
We did not include TagMe [7] in our comparison, as it uses

its own special method for mention recognition; so we could
not control that it would process exactly the same mentions
as the other methods. Besides, TagMe has been designed
for very short texts like tweets—a use-case not considered
here.

In the following, we first report on experiments with dif-
ferent AIDA-light configurations, then on our comparison
against state-of-the-art baselines regarding output quality,
and finally on run-time measurements.

5.2 AIDA-light in Different Configurations

In order to study the influence of the different assets of
AIDA-light, we configured our system in different ways and
ran it on the CoNLL data, which presumably is the most
difficult one of our four test sets.

One possible concern about our architecture is that the
multi-stage algorithm could suffer from early mistakes that
propagate in the processing pipeline. Our experiments showed
a precision of 96% for the“easy”mentions identified in stage 1.
So this potential concern was not an issue.

A second concern was that using only the top K candidate
entities for each mention is risky in potentially missing the
proper entity. We compared two different settings in this
regard:
• Top 5: Iteratively updating the context in our multi-

phase computation is deactivated. The local similarity is
computed with the lack of context-related domains.
• Top 5 with domain coherence: The local similarity is

updated by the chosen entities for “easy mentions”. That
is, the entity-domain coherence is taken into account.

Table 1 shows the top-5 precision results for these two set-
tings. When the correct entity of a mention was among the
top-5 candidates, we count this stage as being successful,
otherwise it is counted as false. The results demonstrate
that the context-related domains have substantial benefit:
3% better precision. In general, the precision of 95.2% at
this first stage is very high, especially considering that the
CoNLL corpus has very difficult texts (with short contexts,
long-tail entity names, metonyms, etc.).

Table 1: Top-5 precision of AIDA-light for top 5
entity candidates on CoNLL.

Method Top5 Top5+Domain
Coherence

CoNLL-YAGO 92.3% 95.2%

Finally, we report the results of AIDA-light with all men-
tions on CoNLL, in the following three configurations:
• KW: AIDA-light uses the baseline features including a

bag of key tokens and surrounding mentions. The collec-
tive algorithm is applied in a single round to the entire
mention set (deactivating the two-stage approach).
• KW and easy mentions: the multi-phase computation

is activated. However, AIDA-light does not update the
context (e.g. domain feature) after the first round.
• KW, easy mentions, and domains: All components

in AIDA-light including multi-phase computation and do-
main features are turned on.
The results are shown in Table 2. Obviously, each addi-

tional asset helps AIDA-light in gaining output quality. Most
notably, enabling “easy mention” disambiguation stage im-
proves precision by almost 4%. Note that this is not at the
expense of increased run-time.

5.3 Comparisons on NED Quality
In our experiments, Illinois Wikifier performed poorly with

precision results around 70% or worse, probably because of
code changes (and perhaps resulting bugs) compared to the
version used in [20]. To avoid improper comparisons, we
therefore discuss only the results of the remaining three com-
petitors: AIDA-light , AIDA, and Spotlight.

Table 3: Precision over corpora (best method per
row is in boldface; statistically significant improve-
ments over Spotlight are marked with an asterisk).

Dataset AIDA AIDA-light Spotlight

CoNLL-YAGO 82.5%∗ 84.8%∗ 75.0%

WP 84.7%∗ 84.4%∗ 63.8%

Wikipedia articles 90.0% 88.3% 89.6%

Wiki-links 80.3% 85.1%∗ 80.7%

Table 3 shows the precision results for the three systems.
AIDA-light outperforms the other two systems on CoNLL
and Wiki-links. Especially, a paired t-test shows that AIDA-
light is significantly better than Spotlight on both corpora
(p-value < 0.01). Particularly on CoNLL, AIDA-light can
handle many difficult entities such as football teams men-
tioned in the form of city names, national sport teams in
the form of country names, etc. On Wiki-links, the point
that brings 4% higher precision than others is AIDA-light ’s
strong ability to handle mentions that differ from the official
names of entities (e.g. “Northwest Fur Company” for the
entity North_West_Company). AIDA-light is slightly worse
than AIDA on WP, but still much better than Spotlight
(20% higher precision). On Wikipedia articles, the best sys-
tem is AIDA (90.0%), followed by Spotlight (89.6%) and
AIDA-light (88.3%). However, there is no significant differ-
ence among the three systems.

Overall, AIDA-light consistently exhibits high output qual-
ity, whereas Spotlight is inferior on very difficult input texts.
AIDA is usually close in performance to AIDA-light, but
clearly loses on Wiki-links because of the small number of
mentions per document for this test case.

5.4 Comparisons on Run-Time Efficiency
The original AIDA system uses a SQL database as a back-

end. Therefore, it is an order of magnitude slower that
the systems that use customized in-memory data structures.
To avoid reporting apples vs. oranges, we exclude AIDA
from the following run-time comparisons, leaving us with
two competitors: AIDA-light and Spotlight.

Table 4: Average per-document run-time results.

Dataset AIDA-light Spotlight

CoNLL-YAGO 0.47s 0.51s

WP 0.05s 0.14s

Wikipedia articles 5.47s 4.22s

Wiki-links 0.18s 0.32s

Table 4 shows the average run-times per document for the
four test corpora. Both systems are very fast. AIDA-light is
faster on CoNLL, WP, and Wiki-links, and slightly slower on
Wikipedia articles. The reason is that AIDA-light computes
coherence including context coherence and type coherence
over all entity pairs, and thus, it becomes slower to process
large documents with hundreds of mentions.

Table 5 shows the run-times on the Wiki-links corpus in
more detail. The reason for choosing Wiki-links is that
it is the largest one among our corpora with 10665 doc-
uments. The table gives 90% confidence intervals for the
per-document average run-time, and also the standard devi-
ation. AIDA-light is much faster than Spotlight on average.
However, they are almost the same on the 90% quantile,
that is, the 10% longest or most difficult documents. The
reason is the increasing complexity of AIDA-light when the
number of mentions increases. Overall, however, AIDA-light
clearly outperformed its competitor on this dataset.

6. CONCLUSION
AIDA-light is a new NED system that reconciles high out-

put quality with fast run-time. Our experiments have shown
that AIDA-light consistently performs as well as or better

Table 2: Precision results of AIDA-light in different configurations on CoNLL.

Settings
KW KW+Easy Mentions KW+Easy Mentions+Domain

Accuracy Avg Running
Time

Accuracy Avg Running
Time

Accuracy Avg Running
Time

CoNLL-YAGO 78.1% 0.42s 81.9% 0.42s 84.8% 0.47s

Table 5: Average run-times on Wiki-links (90% confidence intervals)

Method
Avg. Run-Time (ms) 90% Quantile (ms)

Mean Standard
Deviation

Mean Standard
Deviation

AIDA-light 182 ± 35 2250 1225 ± 352 7032

Spotlight 323 ± 44 2810 1234 ± 443 8831

than state-of-the-art competitors, over a variety of corpora
including news (CoNLL), difficult and short contexts (WP),
Web pages (Wiki-links), and Wikipedia articles.

By its two-stage algorithm, its simple but expressive fea-
tures including thematic domains, and its low footprint,
AIDA-light is geared for high-throughput usage at Web scale.
Our measurements showed that AIDA-light can process a
typical Web page (from the Wiki-links corpus) within 0.2
seconds on mid-range hardware. Its architecture easily al-
lows it to scale out the processing of a large corpus across
the nodes of a cluster or distributed platform. By its small
memory consumption, AIDA-light runs well even on low-end
nodes of such platforms. Thus, with a single-thread through-
put of 5 pages/second, we can process, for example, the com-
plete ClueWeb’12 collection (lemurproject.org/clueweb12/)
with ca. 700 Million pages, in about one week (including
NER) on a mid-range 32-node, 16 cores-per-node cluster.

Our future work includes further improvements of the
multi-stage algorithm, and especially a deeper integration
of the mention recognition (NER, currently implemented by
the CRF-based Stanford Tagger) with the NED method.

7. REFERENCES
[1] A. Z. Broder, M. Charikar, A. M. Frieze, and

M. Mitzenmacher. Min-wise Independent
Permutations. Journal of Computer and System
Sciences 1998.

[2] R. Bunescu and M. Pasca. Using Encyclopedic
Knowledge for Named Entity Disambiguation.
EACL 2006.

[3] M. Cornolti, P. Ferragina, and M. Ciaramita. A
Framework for Benchmarking Entity-annotation
Systems. WWW 2013.

[4] S. Cucerzan. Large-scale Named Entity
Disambiguation Based on Wikipedia Data.
EMNLP-CoNLL 2007.

[5] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes.
Improving Efficiency and Accuracy in Multilingual
Entity Extraction. I-SEMANTICS 2013.

[6] C. Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press 1998.

[7] P. Ferragina and U. Scaiella. Tagme: On-the-fly
Annotation of Short Text Fragments (by Wikipedia
Entities). CIKM 2010.

[8] J. R. Finkel, T. Grenager, and C. Manning.
Incorporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. ACL 2005.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. VLDB 1999.

[10] X. Han and J. Zhao. Named Entity Disambiguation
by Leveraging Wikipedia Semantic Knowledge.
CIKM 2009.

[11] T. Heath and C. Bizer. Linked Data: Evolving the
Web into a Global Data Space. Morgan Claypool 2011.

[12] J. Hoffart, S. Seufert, D. B. Nguyen, M. Theobald,
and G. Weikum. Kore: Keyphrase Overlap
Relatedness for Entity Disambiguation. CIKM 2012.

[13] J. Hoffart, F. M. Suchanek, K. Berberich,
E. Lewis-Kelham, G. de Melo, and G. Weikum.
YAGO2: Exploring and Querying World Knowledge in
Time, Space, Context, and Many Languages.
WWW 2011.

[14] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau,
M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and
G. Weikum. Robust Disambiguation of Named
Entities in Text. EMNLP 2011.

[15] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of
Dimensionality. STOC 1998.

[16] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective Annotation of Wikipedia
Entities in Web Text. KDD 2009.

[17] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and
C. Bizer. Dbpedia Spotlight: Shedding Light on the
Web of Documents. I-SEMANTICS 2011.

[18] D. Milne and I. H. Witten. Learning to Link with
Wikipedia. CIKM 2008.

[19] L. Ratinov and D. Roth. Design Challenges and
Misconceptions in Named Entity Recognition.
CoNLL 2009.

[20] L. Ratinov, D. Roth, D. Downey, and M. Anderson.
Local and Global Algorithms for Disambiguation to
Wikipedia. HLT 2011.

[21] M. Sozio and A. Gionis. The Community-search
Problem and How to Plan a Successful Cocktail Party.
KDD 2010.

