
Web-Scale Querying through 
Linked Data Fragments
Ruben Verborgh Miel Vander Sande Pieter Colpaert 
Sam Coppens Erik Mannens Rik Van de Walle

Ghent University – iMinds – Multimedia Lab

What good is a  
Web of Linked Data

if we cannot  
reliably query it?

<95%
MORE THAN HALF 
of public SPARQL endpoints

AVAILABILITY
Buil-Aranda – Hogan – Umbrich – Vandenbussche  

SPARQL Web-Querying Infrastructure: Ready for Action?

WE CANNOT QUERY
public Linked Data reliably.

WE CANNOT BUILD  
applications on top of
public queryable data.

It’s not a performance issue, 
it is an architectural problem.

SPARQL Server

Client
Client

Client

Client

Client
Client

Client

(a) sparql endpoints perform all processing on the server, leading to fast
query execution with low data bandwidth, and a rapidly overloaded server.

LDF Server

Client
ClientClient

Client

Client

Client

Client Client
Client

(b) ldf servers only support simple requests and can thus handle far higher
loads. Clients perform the querying, so they need more (cacheable) data.

Figure 1: A comparison of required processing (filled bars) and data transfer (dotted lines) shows why ldf scales significantly better.

In the next section, we critically examine the scalability problems
of sparql. Next, we introduce Linked Data Fragments, followed by
the implementation of a server (Section 4) and a client (Section 5).
Section 6 evaluates the improved scalability. We then discuss our
method and its context in Section 7, and conclude in Section 8.

2. RELATED WORK
At its core, the sparql query language [15] allows clients to find

triples based on basic graph patterns. For instance, consider the
following sparql query:

SELECT ?p ?c WHERE {
?p a <http://dbpedia.org/ontology/Artist>.
?p <http://dbpedia.org/ontology/birthPlace> ?c.
?c <http://xmlns.com/foaf/0.1/name> "York"@en.

}
Listing 1: Search for artists born in places named “York”.

Such queries facilitate searching relevant information in datasets
that can contain hundreds of millions of triples. Most triple stores,
such as Virtuoso and Sesame, o↵er a sparql interface, which is
referred to as a “sparql endpoint” when exposed through http.

Before we dive into the details of sparql endpoints, let us first
briefly recapitulate the architectural properties of the Web and why
they enable the Web to scale the way it does. The Web is a dis-
tributed hypermedia application that conforms to the constraints of
the Representational State Transfer architectural style (rest, [11]).
The main building blocks of the Web are resources, which are iden-
tified by urls through the uniform interface o↵ered by http [13].
Resources can be represented in hypermedia formats, which can
link to other resources. These links remove the need for the server to
maintain the application state between di↵erent interactions, as each
representation (and not the server) retains the next steps a client can
take [12]. The combination of the uniform interface and stateless-
ness makes it possible for intermediaries to cache server responses,
which significantly improves scalability.
sparql endpoints essentially implement a protocol on top of http

through a strictly standardized set of constraints [9]. The client
sends a sparql query to a server, which executes it and sends back
the results. Given the amount of data involved and the arbitrary
complexity of queries, the server possibly needs to execute a sig-
nificant amount of work to obtain the results of each query. In
contrast to regular http servers, a sparql endpoint does not expose
resources on an application-specific level, but rather one “endpoint”
resource that acts as a data handling process [13], and an unlimited
set of “query answer” resources that correspond to all queries [9,11].
Therefore, regular http caching strategies for resources below query
level cannot be applied; each unique query still needs full execution.

This query-based partitioning of resources gives sparql poor scaling
properties, as illustrated in Figure 1a. The inherent problem with
such an endpoint architecture is that the required time to generate
each query answer resource is potentially very high, and that all
processing needs to happen at the server side. While this makes
querying rather convenient for clients, it puts an enormous burden
on providers of sparql endpoints, as sparql engines can strain cpu
and ram intensively even for common queries [4]. It should thus
not surprise us that maintaining high availability rates for public
sparql endpoints is exceptionally challenging [6]. This problem
seldom occurs with regular http servers, as the granularity of of-
fered resources can be adjusted such that each individual resource
does not require excessive processing time. Additionally, this finer
granularity allows those resources to be cached e�ciently [11].

The performance of sparql has been the subject of multiple bench-
marks [4, 29]. Several caching strategies have been proposed on
various levels, for instance, by placing a proxy in front of a sparql
endpoint [24], or by integrating caching information into the triple
store itself to allow http caching [35]. However, these techniques
consider caching of results for entire queries, which means related
but non-identical queries do not benefit. Syntax-agnostic approaches
can cache based on the algebraic representation and allow subquery
caching [36], also enabled by other specific techniques [22, 23, 31].

A category of approaches for executing sparql queries over
Linked Data [18] is based on link traversal [19] and relies on the
principle of dereferencing [2]. Link traversal strongly benefits from
caching [16] because the granularity is refined to the level of data
needed for queries—as opposed to the full result set of a single query.
This technique resembles the querying method we will introduce
in this paper, because of the active role clients play in fetching and
evaluating data, as well as the potential of pipelining through non-
blocking iterators [19]. However, our method does not rely on one
primary data source per uri (a consequence of dereferencing) and
we use additional information to reduce the execution time of typi-
cal queries by more than an order of magnitude. While optimizing
planning heuristics exist [17], our planning strategy employs more
reliable indicators. Furthermore, the present initial paper focuses
on vastly improving the scalability of individual endpoints, even
though the method is generalizable to distributed querying.

Closely tied to the publication of Linked Data is the specification
of a standard read/write interface, which is the goal of the Linked
Data Platform (ldp, [32]). While the definitions in Section 3 will
seemingly demand a comparison with ldp, it is crucial to note that
ldp and Linked Data Fragments are orthogonal, i.e., a server can
choose to support either or both of them independently. More specif-
ically, ldp proposes a subject-centric read/write interface, while the
goal of Linked Data Fragments is to o↵er scalable query execution.
Our design permits any resource to additionally implement ldp.

An architectural problem 
requires an architectural solution.

SPARQL Server

Client
Client

Client

Client

Client
Client

Client

(a) sparql endpoints perform all processing on the server, leading to fast
query execution with low data bandwidth, and a rapidly overloaded server.

LDF Server

Client
ClientClient

Client

Client

Client

Client Client
Client

(b) ldf servers only support simple requests and can thus handle far higher
loads. Clients perform the querying, so they need more (cacheable) data.

Figure 1: A comparison of required processing (filled bars) and data transfer (dotted lines) shows why ldf scales significantly better.

In the next section, we critically examine the scalability problems
of sparql. Next, we introduce Linked Data Fragments, followed by
the implementation of a server (Section 4) and a client (Section 5).
Section 6 evaluates the improved scalability. We then discuss our
method and its context in Section 7, and conclude in Section 8.

2. RELATED WORK
At its core, the sparql query language [15] allows clients to find

triples based on basic graph patterns. For instance, consider the
following sparql query:

SELECT ?p ?c WHERE {
?p a <http://dbpedia.org/ontology/Artist>.
?p <http://dbpedia.org/ontology/birthPlace> ?c.
?c <http://xmlns.com/foaf/0.1/name> "York"@en.

}
Listing 1: Search for artists born in places named “York”.

Such queries facilitate searching relevant information in datasets
that can contain hundreds of millions of triples. Most triple stores,
such as Virtuoso and Sesame, o↵er a sparql interface, which is
referred to as a “sparql endpoint” when exposed through http.

Before we dive into the details of sparql endpoints, let us first
briefly recapitulate the architectural properties of the Web and why
they enable the Web to scale the way it does. The Web is a dis-
tributed hypermedia application that conforms to the constraints of
the Representational State Transfer architectural style (rest, [11]).
The main building blocks of the Web are resources, which are iden-
tified by urls through the uniform interface o↵ered by http [13].
Resources can be represented in hypermedia formats, which can
link to other resources. These links remove the need for the server to
maintain the application state between di↵erent interactions, as each
representation (and not the server) retains the next steps a client can
take [12]. The combination of the uniform interface and stateless-
ness makes it possible for intermediaries to cache server responses,
which significantly improves scalability.
sparql endpoints essentially implement a protocol on top of http

through a strictly standardized set of constraints [9]. The client
sends a sparql query to a server, which executes it and sends back
the results. Given the amount of data involved and the arbitrary
complexity of queries, the server possibly needs to execute a sig-
nificant amount of work to obtain the results of each query. In
contrast to regular http servers, a sparql endpoint does not expose
resources on an application-specific level, but rather one “endpoint”
resource that acts as a data handling process [13], and an unlimited
set of “query answer” resources that correspond to all queries [9,11].
Therefore, regular http caching strategies for resources below query
level cannot be applied; each unique query still needs full execution.

This query-based partitioning of resources gives sparql poor scaling
properties, as illustrated in Figure 1a. The inherent problem with
such an endpoint architecture is that the required time to generate
each query answer resource is potentially very high, and that all
processing needs to happen at the server side. While this makes
querying rather convenient for clients, it puts an enormous burden
on providers of sparql endpoints, as sparql engines can strain cpu
and ram intensively even for common queries [4]. It should thus
not surprise us that maintaining high availability rates for public
sparql endpoints is exceptionally challenging [6]. This problem
seldom occurs with regular http servers, as the granularity of of-
fered resources can be adjusted such that each individual resource
does not require excessive processing time. Additionally, this finer
granularity allows those resources to be cached e�ciently [11].

The performance of sparql has been the subject of multiple bench-
marks [4, 29]. Several caching strategies have been proposed on
various levels, for instance, by placing a proxy in front of a sparql
endpoint [24], or by integrating caching information into the triple
store itself to allow http caching [35]. However, these techniques
consider caching of results for entire queries, which means related
but non-identical queries do not benefit. Syntax-agnostic approaches
can cache based on the algebraic representation and allow subquery
caching [36], also enabled by other specific techniques [22, 23, 31].

A category of approaches for executing sparql queries over
Linked Data [18] is based on link traversal [19] and relies on the
principle of dereferencing [2]. Link traversal strongly benefits from
caching [16] because the granularity is refined to the level of data
needed for queries—as opposed to the full result set of a single query.
This technique resembles the querying method we will introduce
in this paper, because of the active role clients play in fetching and
evaluating data, as well as the potential of pipelining through non-
blocking iterators [19]. However, our method does not rely on one
primary data source per uri (a consequence of dereferencing) and
we use additional information to reduce the execution time of typi-
cal queries by more than an order of magnitude. While optimizing
planning heuristics exist [17], our planning strategy employs more
reliable indicators. Furthermore, the present initial paper focuses
on vastly improving the scalability of individual endpoints, even
though the method is generalizable to distributed querying.

Closely tied to the publication of Linked Data is the specification
of a standard read/write interface, which is the goal of the Linked
Data Platform (ldp, [32]). While the definitions in Section 3 will
seemingly demand a comparison with ldp, it is crucial to note that
ldp and Linked Data Fragments are orthogonal, i.e., a server can
choose to support either or both of them independently. More specif-
ically, ldp proposes a subject-centric read/write interface, while the
goal of Linked Data Fragments is to o↵er scalable query execution.
Our design permits any resource to additionally implement ldp.

We developed an approach 
to query Linked Data 
in a scalable and reliable way 
by moving intelligence 
from the server to the client.

What Linked Data Fragments are.

How clients can execute queries.

Web-Scale Querying through 
Linked Data Fragments

Taking querying to the next level.

Web-Scale Querying through 
Linked Data Fragments

What Linked Data Fragments are.

How clients can execute queries.

Taking querying to the next level.

Currently, there are three ways 
to query a Linked Data set.

high server efforthigh client effort

derefer- 
encing

data 
dump

SPARQL 
endpoint

They offer fragments of a dataset.

data 
dump

SPARQL 
endpoint

Any fragment of a Linked Data set 
is called a Linked Data Fragment.

derefer- 
encing

high server efforthigh client effort

all subject SPARQL querySELECTOR

Can we query fragments that 
balance client and server effort?

data 
dump

SPARQL 
endpoint

basic 
Linked Data 
Fragments

derefer- 
encing

high server efforthigh client effort

all subject SPARQL querytriple pattern

A basic LDF is easy to generate 
yet enables efficient querying.

data (in pages)
 basic triple pattern { ?s ?p ?o. }

metadata
 count of total matches

controls
 retrieve other basic LDFs

data (first 100)

controls (other basic LDFs)

metadata (total count)

How can a server publish 
basic Linked Data Fragments?

open-source server

choose your back-end
 (private) SPARQL endpoint
 HDT binary triple format 
 Turtle file
 …

Web-Scale Querying through 
Linked Data Fragments

What Linked Data Fragments are.

How clients can execute queries.

Taking querying to the next level.

How to answer this query using 
only basic Linked Data Fragments?

SELECT ?person ?city WHERE {
 ?person a dbpedia-owl:Artist.
 ?person dbpedia-owl:birthPlace ?city.
 ?city foaf:name "York"@en.
}

Get the corresponding fragments 

?person a dbpedia-owl:Artist.

?person dbpedia-owl:birthPlace ?city.

?city foaf:name "York"@en.
dbpedia:York foaf:name “York”@en.
dbpedia:York,_Ontario foaf:name “York”@en. 
…

dbpedia:Ganesh_Ghosh …:birthPlace dbpedia:Bengal_Presidency.
dbpedia:Jacques_L'enfant …:birthPlace dbpedia:Beauce. 
…

dbpedia:Aamir_Zaki a dbpedia-owl:Artist.
dbpedia:Ahmad_Morid a dbpedia-owl:Artist. 
…

Get the corresponding fragments 
and read the count metadata.
?person a dbpedia-owl:Artist. ±61,000

±470,000

12

?person dbpedia-owl:birthPlace ?city.

?city foaf:name "York"@en.
dbpedia:York foaf:name “York”@en.
dbpedia:York,_Ontario foaf:name “York”@en. 
…

dbpedia:Ganesh_Ghosh …:birthPlace dbpedia:Bengal_Presidency.
dbpedia:Jacques_L'enfant …:birthPlace dbpedia:Beauce. 
…

dbpedia:Aamir_Zaki a dbpedia-owl:Artist.
dbpedia:Ahmad_Morid a dbpedia-owl:Artist. 
…

Start with the smallest fragment. 
Start with the first match.
?person a dbpedia-owl:Artist ±61,

±470,

12

?person dbpedia-owl:birthPlace

?city foaf:name "York"@en.
dbpedia:York foaf:name “York”@en.
dbpedia:York,_Ontario foaf:name “York”@en. 
…

dbpedia:Ganesh_Ghosh …:birthPlace dbpedia:Bengal_Presidency.
dbpedia:Jacques_L'enfant …:birthPlace dbpedia:Beauce.
…

dbpedia:Aamir_Zaki
dbpedia:Ahmad_Morid a dbpedia-owl:Artist.
…

How to answer this query using 
only basic Linked Data Fragments?

SELECT ?person WHERE {
 ?person a dbpedia-owl:Artist.
 ?person dbpedia-owl:birthPlace dbpedia:York.
 dbpedia:York foaf:name "York"@en.
}

Get the corresponding fragments 

?person a dbpedia-owl:Artist.

?person dbpo:birthPlace dbpedia:York.
dbpedia:John_Flaxman dbpo:birthPlace dbpedia:York.
dbpedia:Joseph_Hansom dbpo:birthPlace dbpedia:York. 
…

dbpedia:Aamir_Zaki a dbpedia-owl:Artist.
dbpedia:Ahmad_Morid a dbpedia-owl:Artist. 
…

Get the corresponding fragments 
and read the count metadata.
?person a dbpedia-owl:Artist. ±61,000

75?person dbpo:birthPlace dbpedia:York.
dbpedia:John_Flaxman dbpo:birthPlace dbpedia:York.
dbpedia:Joseph_Hansom dbpo:birthPlace dbpedia:York. 
…

dbpedia:Aamir_Zaki a dbpedia-owl:Artist.
dbpedia:Ahmad_Morid a dbpedia-owl:Artist. 
…

Start with the smallest fragment. 
Start with the first match.
?person a dbpedia-owl:Artist ±61,

75?person dbpo:birthPlace dbpedia:York.
dbpedia:John_Flaxman dbpo:birthPlace dbpedia:York.
dbpedia:Joseph_Hansom dbpo:birthPlace dbpedia:York. 
…

dbpedia:Aamir_Zaki
dbpedia:Ahmad_Morid a dbpedia-owl:Artist.
…

How to answer this query using 
only basic Linked Data Fragments?

ASK {
 dbp:John_Flaxman a dbpo:Artist.
 dbp:John_Flaxman dbpo:birthPlace dbp:York.
 dbp:York foaf:name "York"@en.
}

Get the corresponding fragment 
and read the count metadata.
dbpedia:John_Flaxman a dbpedia-owl:Artist. 1

dbpedia:John_Flaxman a dbpedia-owl:Artist.
!

Output the match:
?person = dbpedia:John_Flaxman 
?city = dbpedia:York

Recursively repeat the process 
for all bindings.

?person dbpo:birthPlace dbpedia:York.
dbpedia:John_Flaxman dbpo:birthPlace dbpedia:York.
dbpedia:Joseph_Hansom dbpo:birthPlace dbpedia:York. 
…

?city foaf:name "York"@en.
dbpedia:York foaf:name “York”@en.
dbpedia:York,_Ontario foaf:name “York”@en. 
…

Web-Scale Querying through 
Linked Data Fragments

What Linked Data Fragments are.

How clients can execute queries.

Taking querying to the next level.

Linked Data Fragments is a vision,  
not just a single technology.

derefer- 
encing

data 
dump

SPARQL 
endpoint

basic 
Linked Data 
Fragments

How can clients query the Web  
in a scalable way?

L i n k e d D a t a F r a g m e n t s

We want to query different servers, 
with many different kinds of fragments.

derefer- 
encing

data 
dump

SPARQL 
endpoint

basic 
Linked Data 
Fragments

L i n k e d D a t a F r a g m e n t s

Find suitcases on Amazon 
and their cost.

SELECT ?label ?cost WHERE {

 ?suitcase schema:keywords "suitcase";

 prov:wasDerivedFrom <http://amazon.com/>;

 rdfs:label ?label;

 schema:cost ?cost.

}

Find suitcases on Amazon 
and see how much they cost on eBay.

SELECT ?label ?costA ?costE WHERE {
 ?suitcaseA schema:keywords "suitcase";
 prov:wasDerivedFrom <http://amazon.com/>;
 rdfs:label ?label;
 schema:cost ?costA.
 ?suitcaseE schema:keywords ?label;
 prov:wasDerivedFrom <http://ebay.com/>;
 schema:cost ?costE.
}

The Linked Data Fragments vision  
allows clients to query the Web.

If we want to see intelligent clients,
we must stop building intelligent servers.

Linked Data Fragments is the quest to 
design servers that enable clients to query.

All software is available 
as open source.

linkeddatafragments.org

data.linkeddatafragments.org

client.linkeddatafragments.org

linkeddatafragments.org

Ruben Verborgh Miel Vander Sande Pieter Colpaert 
Sam Coppens Erik Mannens Rik Van de Walle

Ghent University – iMinds – Multimedia Lab

