Interlinking: Performance Assessment of User Evaluation vs. Supervised Learning Approaches

Mofeed Hassan, Jens Lehmann and Axel-Cyrille Ngonga Ngomo

Agile Knowledge Engineering and Semantic Web Department of Computer Science University of Leipzig Augustusplatz 10, 04109 Leipzig

May 17, 2015

Why Link Discovery?

- Fourth Linked Data principle
- Links are central for
 - Cross-ontology QA
 - Data Integration
 - Reasoning
 - Federated Queries
 - .
- 3 Linked Data on the Web:
 - 10+ thousand datasets
 - 89+ billion triples
 - $\approx 500+$ million links

Why is it difficult?

Definition (Link Discovery)

- $lue{}$ Given sets S and T of resources and relation $\mathcal R$
- Task: Find $M = \{(s, t) \in S \times T : \mathcal{R}(s, t)\}$
- Common approaches:
 - Find $M' = \{(s, t) \in S \times T : \sigma(s, t) \geq \theta\}$
 - Find $M' = \{(s,t) \in S \times T : \delta(s,t) \leq \theta\}$
- Time complexity
 - Large number of triples
 - Quadratic a-priori runtime
 - 69 days for mapping cities from DBpedia to Geonames (1ms per comparison)
 - Decades for linking DBpedia and LGD

Why is it difficult?

Definition (Link Discovery)

- $lue{}$ Given sets S and T of resources and relation $\mathcal R$
- Task: Find $M = \{(s, t) \in S \times T : \mathcal{R}(s, t)\}$
- Common approaches:
 - Find $M' = \{(s, t) \in S \times T : \sigma(s, t) \geq \theta\}$
 - Find $M' = \{(s,t) \in S \times T : \delta(s,t) \leq \theta\}$

Time complexity

- Large number of triples
- Quadratic a-priori runtime
- 69 days for mapping cities from DBpedia to Geonames (1ms per comparison)
- Decades for linking DBpedia and LGD . . .

Why is it difficult?

Complexity of specifications

- Combination of several attributes required for high precision
- Adequate atomic similarity functions difficult to detect
- Tedious discovery of most adequate mapping

Introduction

- Interlinking tools LIMES, SILK, RDFAI,...
- Interlinking tools differ in many factors such as:
 - 1 Automation and user involvement
 - 2 Domain dependency
 - 3 Matching techniques
- Manual links validation as a user involvement:
 - Benchmarks
 - 2 Active learning positive and negative examples

Introduction

- Commonly used
 - String distance/similarity measures
 - Edit distance
 - Q-Gram similarity
 - Jaro-Winkler
 -
 - Metrics
 - Minkowski distance
 - Orthodromic distance
 - Symmetric Hausdorff distance
 - **.** . . .

ldea

Learning distance/similarity measures from data can lead to bette accuracy while linking.

Introduction

- Commonly used
 - String distance/similarity measures
 - Edit distance
 - Q-Gram similarity
 - Jaro-Winkler
 -
 - Metrics
 - Minkowski distance
 - Orthodromic distance
 - Symmetric Hausdorff distance
 - **.** . . .

Idea

 Learning distance/similarity measures from data can lead to better accuracy while linking.

Problem

■ Edit distance does not differentiate between different types of edits.

Source labels

Generalised epidermolysis

Diabetes <u>I</u>

Diabetes I

Target labels

Generalized epidermolysis

Diabetes

Diabetes II

Problem

 Edit distance does not differentiate between different types of edits.

Source labels

Generalised epidermolysis

Diabetes <u>I</u>

Diabetes II

Target labels

Generalized epidermolysis

Diabetes I

Diabetes II

• Choosing $\theta \in [0,1)$

	%
F-Score	80.0
Precision	100.0
Recall	66.7

• Choosing $\theta \in [1,2)$

o	1	2	3		edit distance
X	X X			X :	2

	%
F-Score	75.0
Precision	60 N

Recall 100.0

Solution: Weighted edit distance

Assign weight to each operation: substitution, insertion, deletion.

• Choosing $\theta \in [0,1)$

	%
F-Score	80.0
Precision	100.0
Recall	66.7

• Choosing $\theta \in [1,2)$

o	1	2	3			edit distance
×	X	Г		X	X	_

	%
F-Score	75.0
Precision	60.0
Recall	100.0

Solution: Weighted edit distance

Assign weight to each operation: substitution, insertion, deletion.

Cost matrix

- Costs are arranged in a quadratic matrix M
- Cell $m_{i,j}$ contains the cost of transforming character associated to row i into character associated with column j
- Characters are from an alphabet $\{'A', \ldots, 'Z', 'a', \ldots, 'z', '0', \ldots, '9', '\epsilon'\}$
- Main diagonal values are zeros

Pros

- Can differentiate between edit operations.
- Better F-measure in some cases.

Cons

- No dedicated scalable algorithm for weighted edit distances
- Difficult to use for link discovery.

	DBLP-Scholar	ABT-Buy	DBLP-ACM
F-measure (%)	87.85	0.60	97.92
Without REEDED (s)	30,096	43,236	26,316
With REEDED (s)	668.62	65.21	14.24

Extension of existing algorithms

Idea

- $edit(x,y) = \theta \rightarrow \text{Need } \theta \text{ operations to transform } x \text{ into } y$
- $\delta(x,y) \geq \theta \cdot \min_{i \neq j} m_{ij}$

Extension

- **1** Run existing algorithm with threshold $\frac{\theta}{\min\limits_{i\neq j} m_i}$
- **2** Filter results by using $\delta(x, y) \ge \theta$

Problem

Does not scale

Extension of existing algorithms

ldea

- $edit(x,y) = \theta \rightarrow \text{Need } \theta \text{ operations to transform } x \text{ into } y$
- $\delta(x,y) \geq \theta \cdot \min_{i \neq j} m_{ij}$

Extension

- **I** Run existing algorithm with threshold $\frac{\theta}{\min\limits_{i\neq j} m_{ij}}$
- 2 Filter results by using $\delta(x, y) \ge \theta$

Problem

Does not scale.

Extension of existing algorithms

<u>I</u>dea

- $edit(x,y) = \theta \rightarrow \text{Need } \theta \text{ operations to transform } x \text{ into } y$
- $\delta(x,y) \geq \theta \cdot \min_{i \neq j} m_{ij}$

Extension

- **1** Run existing algorithm with threshold $\frac{\theta}{\min\limits_{i\neq j}m_{ij}}$
- **2** Filter results by using $\delta(x, y) \ge \theta$

Problem

Does not scale.

REEDED

- Series of filters.
- Both complete and correct.

Length-Aware Filter

- *Input*: a pair $(s,t) \in S \times T$ and a threshold θ
- Output: the pair itself or null

Insight

Given two strings s and t with lengths |s| resp. |t|, we need at least ||s| - |t|| edit operations to transform s into t.

Examples

A.
$$\langle s, t, \theta \rangle = \langle$$
 "realize", "realise", $1 \rangle$ $||s| - |t|| = 0$, \Rightarrow pass **B.** $\langle s, t, \theta \rangle = \langle$ "realize", "real", $1 \rangle$ $||s| - |t|| = 3$, \Rightarrow discard

Character-Aware Filter

- Input: a pair $(s,t) \in \mathcal{L}$ and a threshold θ
- Output: the pair itself or null

Insight

Given two strings s and t, if |C| is the number of characters that do not belong to both strings, we need at least $\frac{|C|}{2}$ operations to transform s into t.

Examples

A.
$$\langle s, t, \theta \rangle = \langle \text{"realize"}, \text{"realise"}, 1 \rangle$$

$$C = \{s, z\}, \qquad \lfloor \frac{|C|}{2} \rfloor \cdot \min_{i \neq j} (m_{ij}) = 0.5, \qquad \Rightarrow \textit{pass}$$
B. $\langle s, t, \theta \rangle = \langle \text{"realize"}, \text{"concept"}, 1 \rangle$

$$C = \{r, c, a, l, i, z, o, n, p, t\}, \lfloor \frac{|C|}{2} \rfloor \cdot \min_{i \neq j}(m_{ij}) > 1, \Rightarrow discard$$

Verification Filter

- *Input*: a pair $(s,t) \in \mathcal{C}$ and a threshold θ
- Output: the pair itself or null

Insight

Definition of Weighted Edit Distance. Two strings s and t are similar iff the sum of the operation costs to transform s into t is less than or equal to θ .

Examples

A.
$$\langle s, t, \theta \rangle = \langle \text{"realize"}, \text{"realise"}, 1 \rangle$$

 $\delta(s, t) = m_{z,s} = 0.6, \Rightarrow pass$

Experimental Setup/1

Datasets

dataset.property	domain	# of pairs	avg length
DBLP.title	bibliographic	6,843,456	56.359
ACM.authors	bibliographic	5,262,436	46.619
GoogleProducts.name	e-commerce	10,407,076	57.024
ABT.description	e-commerce	1,168,561	248.183

Experimental Setup/2

Weight configuration

Given an edit operation, the higher the probability of error, the lower its weight.

- Load typographical error frequencies
- 2 For insertion and deletion, calculate total frequency for each character
- 3 Normalize values on max frequency

DBLP.title — bibliographic domain — 6,843,456 pairs

PassJoin*			REEI	DED
θ	average	st.dev.	average	st.dev.
1	10.75	\pm 0.92	10.38	\pm 0.35
2	30.74	\pm 5.00	15.27	$\pm~0.76$
3	89.60	$\pm~1.16$	19.84	$\pm~0.14$
4	246.93	\pm 3.08	25.91	$\pm~0.29$
5	585.08	\pm 5.47	37.59	$\pm~0.43$

* Extended to deal with weighted edit distances.

ACM.authors — bibliographic domain — 5,262,436 pairs

PassJoin*			REEI	DED
θ	average	st.dev.	average	st.dev.
1	9.07	\pm 1.05	6.16	\pm 0.07
2	18.53	$\pm~0.22$	8.54	$\pm~0.29$
3	42.97	$\pm~1.02$	12.43	$\pm~0.47$
4	98.86	$\pm~1.98$	20.44	$\pm~0.27$
5	231.11	$\pm~2.03$	35.13	$\pm~0.35$

* Extended to deal with weighted edit distances.

GoogleProducts.name — e-commerce domain — 10,407,076 pairs

PassJoin*			REE	DED
θ	average	st.dev.	average	st.dev.
1	17.86	$\pm~0.22$	15.08	$\pm~2.50$
2	62.31	\pm 6.30	20.43	$\pm~0.10$
3	172.93	$\pm~1.59$	27.99	$\pm~0.19$
4	475.97	\pm 5.34	42.46	$\pm~0.32$
5	914.60	$\pm~10.47$	83.71	$\pm~0.97$

* Extended to deal with weighted edit distances.

ABT.description — e-commerce domain — 1,168,561 pairs

PassJoin*			REEI	DED
θ	average	st.dev.	average	st.dev.
1	74.41	\pm 1.80	24.48	\pm 0.41
2	140.73	$\pm~1.40$	27.71	$\pm~0.29$
3	217.55	\pm 7.72	30.61	$\pm~0.34$
4	305.08	\pm 4.78	34.13	$\pm~0.30$
5	410.72	\pm 3.36	38.73	$\pm~0.44$

^{*} Extended to deal with weighted edit distances.

Effect of filters

GooglePr.name	heta=1	$\theta = 2$	$\theta = 3$	$\theta = 4$	$\theta = 5$
$ S \times T $	10,407,076	10,407,076	10,407,076	10,407,076	10,407,076
$ \mathcal{L} $	616,968	1,104,644	1,583,148	2,054,284	2,513,802
$ \mathcal{N} $	4,196	4,720	9,278	38,728	153,402
$ \mathcal{A} $	4,092	4,153	4,215	4,331	4,495
<i>RR</i> (%)	99.96	99.95	99.91	99.63	95.53
ABT.description	heta=1	$\theta = 2$	$\theta = 3$	$\theta = 4$	$\theta = 5$
ABT.description $ S \times T $	$\theta = 1$ $1,168,561$	$\theta = 2$ 1,168,561	$\theta = 3$ 1,168,561	$\theta = 4$ 1,168,561	$\theta = 5$ 1,168,561
•					
$ S \times T $	1,168,561	1,168,561	1,168,561	1,168,561	1,168,561
$egin{array}{c} \mathcal{S} imes \mathcal{T} \ \mathcal{L} \end{array}$	1,168,561 22,145	1,168,561 38,879	1,168,561 55,297	1,168,561 72,031	1,168,561 88,299

Conclusion and Future Work

- Presented REEDED, a time-efficient, correct and complete
 LD approach for weighted edit distances
- Showed that REEDED scales better than simple extension of existing
- Future work includes:
 - Develop similar approach for weighted n-gram similarities.
 - Combine REEDED with specification learning approaches:
 - RAVEN, using Linear SVMs;
 - EAGLE, COALA using genetic programming.
 - Devise unsupervised learning approach for weights.

Thank you! Questions?

Axel Ngonga University of Leipzig AKSW Research Group Augustusplatz 10, Room P616 04109 Leipzig, Germany ngonga@informatik.uni-leipzig.de