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Why Link Discovery?

1 Fourth Linked Data principle

2 Links are central for

Cross-ontology QA
Data Integration
Reasoning
Federated Queries
...

3 Linked Data on the Web:

10+ thousand datasets
89+ billion triples
≈ 500+ million links
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Why is it difficult?

Definition (Link Discovery)

Given sets S and T of resources and relation R
Task: Find M = {(s, t) ∈ S × T : R(s, t)}
Common approaches:

Find M ′ = {(s, t) ∈ S × T : σ(s, t) ≥ θ}
Find M ′ = {(s, t) ∈ S × T : δ(s, t) ≤ θ}

1 Time complexity
Large number of triples
Quadratic a-priori runtime
69 days for mapping cities from
DBpedia to Geonames (1ms per
comparison)
Decades for linking DBpedia and
LGD . . .
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Why is it difficult?

2 Complexity of specifications
Combination of several attributes required for high precision
Adequate atomic similarity functions difficult to detect
Tedious discovery of most adequate mapping
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Introduction

Interlinking tools LIMES, SILK, RDFAI,...

Interlinking tools differ in many factors such as:

1 Automation and user involvement
2 Domain dependency
3 Matching techniques

Manual links validation as a user involvement:

1 Benchmarks
2 Active learning positive and negative examples
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Introduction

Commonly used
String distance/similarity measures

Edit distance
Q-Gram similarity
Jaro-Winkler
. . .

Metrics

Minkowski distance
Orthodromic distance
Symmetric Hausdorff distance
. . .

Idea

Learning distance/similarity measures from data can lead to better
accuracy while linking.
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Motivation/1

Problem

Edit distance does not differentiate between different types of
edits.

Source labels

Generalised epidermolysis
Diabetes I
Diabetes II

Target labels

Generalized epidermolysis
Diabetes I
Diabetes II
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Motivation/2

Choosing θ ∈ [0, 1)

%

F-Score 80.0
Precision 100.0

Recall 66.7

Choosing θ ∈ [1, 2)

%

F-Score 75.0
Precision 60.0

Recall 100.0

Solution: Weighted edit distance

Assign weight to each operation: substitution, insertion,
deletion.
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Motivation/3

Cost matrix

Costs are arranged in a quadratic matrix M

Cell mi ,j contains the cost of transforming character
associated to row i into character associated with column j

Characters are from an alphabet
{‘A‘, . . . , ‘Z ‘, ‘a‘, . . . , ‘z ‘, ‘0‘, . . . , ‘9‘, ‘ε‘}
Main diagonal values are zeros
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Motivation/4

Pros

Can differentiate between edit operations.
Better F-measure in some cases.

Cons

No dedicated scalable algorithm for weighted edit distances
Difficult to use for link discovery.
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Motivation/5

DBLP–Scholar ABT–Buy DBLP–ACM
F-measure (%) 87.85 0.60 97.92
Without REEDED (s) 30,096 43,236 26,316
With REEDED (s) 668.62 65.21 14.24
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Extension of existing algorithms

Idea

edit(x , y) = θ → Need θ operations to transform x into y

δ(x , y) ≥ θ ·min
i 6=j

mij

Extension

1 Run existing algorithm with threshold θ
min
i 6=j

mij

2 Filter results by using δ(x , y) ≥ θ

Problem

Does not scale.
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REEDED

Series of filters.

Both complete and correct.
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Length-Aware Filter

Input: a pair (s, t) ∈ S × T and a threshold θ

Output: the pair itself or null

Insight

Given two strings s and t with lengths |s| resp. |t|, we need at
least ||s| − |t|| edit operations to transform s into t.

Examples

A. 〈s, t, θ〉 = 〈“realize“, “realise“, 1〉
||s| − |t|| = 0, ⇒ pass
B. 〈s, t, θ〉 = 〈“realize“, “real“, 1〉
||s| − |t|| = 3, ⇒ discard
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Character-Aware Filter

Input: a pair (s, t) ∈ L and a threshold θ

Output: the pair itself or null

Insight

Given two strings s and t, if |C | is the number of characters that

do not belong to both strings, we need at least |C |2 operations to
transform s into t.

Examples

A. 〈s, t, θ〉 = 〈“realize“, “realise“, 1〉
C = {s, z}, b |C |2 c ·min

i 6=j
(mij) = 0.5, ⇒ pass

B. 〈s, t, θ〉 = 〈“realize“, “concept“, 1〉
C = {r , c , a, l , i , z , o, n, p, t}, b |C |2 c ·min

i 6=j
(mij) > 1,⇒ discard
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Verification Filter

Input: a pair (s, t) ∈ C and a threshold θ

Output: the pair itself or null

Insight

Definition of Weighted Edit Distance. Two strings s and t are
similar iff the sum of the operation costs to transform s into t is
less than or equal to θ.

Examples

A. 〈s, t, θ〉 = 〈“realize“, “realise“, 1〉
δ(s, t) = mz,s = 0.6, ⇒ pass
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Experimental Setup/1

Datasets

dataset.property domain # of pairs avg length
DBLP.title bibliographic 6,843,456 56.359
ACM.authors bibliographic 5,262,436 46.619
GoogleProducts.name e-commerce 10,407,076 57.024
ABT.description e-commerce 1,168,561 248.183
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Experimental Setup/2

Weight configuration

Given an edit operation, the higher the probability of error, the
lower its weight.

1 Load typographical error
frequencies

2 For insertion and deletion,
calculate total frequency for
each character

3 Normalize values on max
frequency
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Evaluation/1

DBLP.title — bibliographic domain — 6,843,456 pairs

PassJoin? REEDED
θ average st.dev. average st.dev.

1 10.75 ± 0.92 10.38 ± 0.35
2 30.74 ± 5.00 15.27 ± 0.76
3 89.60 ± 1.16 19.84 ± 0.14
4 246.93 ± 3.08 25.91 ± 0.29
5 585.08 ± 5.47 37.59 ± 0.43

? Extended to deal with weighted edit distances.
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Evaluation/2

ACM.authors — bibliographic domain — 5,262,436 pairs

PassJoin? REEDED
θ average st.dev. average st.dev.

1 9.07 ± 1.05 6.16 ± 0.07
2 18.53 ± 0.22 8.54 ± 0.29
3 42.97 ± 1.02 12.43 ± 0.47
4 98.86 ± 1.98 20.44 ± 0.27
5 231.11 ± 2.03 35.13 ± 0.35

? Extended to deal with weighted edit distances.
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Evaluation/3

GoogleProducts.name — e-commerce domain — 10,407,076 pairs

PassJoin? REEDED
θ average st.dev. average st.dev.

1 17.86 ± 0.22 15.08 ± 2.50
2 62.31 ± 6.30 20.43 ± 0.10
3 172.93 ± 1.59 27.99 ± 0.19
4 475.97 ± 5.34 42.46 ± 0.32
5 914.60 ± 10.47 83.71 ± 0.97

? Extended to deal with weighted edit distances.
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Evaluation/4

ABT.description — e-commerce domain — 1,168,561 pairs

PassJoin? REEDED
θ average st.dev. average st.dev.

1 74.41 ± 1.80 24.48 ± 0.41
2 140.73 ± 1.40 27.71 ± 0.29
3 217.55 ± 7.72 30.61 ± 0.34
4 305.08 ± 4.78 34.13 ± 0.30
5 410.72 ± 3.36 38.73 ± 0.44

? Extended to deal with weighted edit distances.
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Effect of filters

GooglePr.name θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 10,407,076 10,407,076 10,407,076 10,407,076 10,407,076
|L| 616,968 1,104,644 1,583,148 2,054,284 2,513,802
|N | 4,196 4,720 9,278 38,728 153,402
|A| 4,092 4,153 4,215 4,331 4,495

RR(%) 99.96 99.95 99.91 99.63 95.53

ABT.description θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 1,168,561 1,168,561 1,168,561 1,168,561 1,168,561
|L| 22,145 38,879 55,297 72,031 88,299
|N | 1,131 1,193 1,247 1,319 1,457
|A| 1,087 1,125 1,135 1,173 1,189

RR(%) 99.90 99.90 99.89 99.88 99.87
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Conclusion and Future Work

Presented REEDED, a time-efficient, correct and complete
LD approach for weighted edit distances

Showed that REEDED scales better than simple extension of
existing

Future work includes:

Develop similar approach for weighted n-gram similarities.
Combine REEDED with specification learning approaches:

RAVEN, using Linear SVMs;
EAGLE, COALA using genetic programming.

Devise unsupervised learning approach for weights.
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Thank you!
Questions?

Axel Ngonga
University of Leipzig

AKSW Research Group
Augustusplatz 10, Room P616

04109 Leipzig, Germany
ngonga@informatik.uni-leipzig.de
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