Simplified RDB2RDF Mapping

Claus Stadler, Jörg Unbehauen, Patrick Westphal, Mohamed Ahmed Sherif and Jens Lehmann

presented by Axel-Cyrille Ngonga Ngomo

2015 May 19

Outline

- Motivation
- 2 R2RML in a Nutshell
- 3 SML in a Nutshell
- 4 SML Step by Step Example
- **6** Evaluation

Outline

- Motivation
- 2 R2RML in a Nutshell
- 3 SML in a Nutshell
- 4 SML Step by Step Example
- Evaluation

Motivation - RDB2RDF Approaches

Several tools exist that implemented different approaches for mapping relational databases to RDF, of which R2RML became a W3C standard (http://www.w3.org/TR/r2rml/).

D2RQ

Ontop

Virtuoso RDF views

R2RML

From Tables to Triples

All these approaches iterate tables and on every row they first create RDF terms and then arrange them to triples:

$Our\ Approach$

- In SQL, there is the well known CREATE VIEW statement to create views from tables and other views.
- Quad stores essentially use a table with four columns to store RDF data.
- Current RDB2RDF approaches are quite different from how views are created in SQL.
- Our approach is to blend the traditional SQL CREATE VIEW statements with SPARQL CONSTRUCT queries:

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
    PREFIX ex: <a href="http://example.org/">http://example.org/>
 3
    CREATE VIEW emps AS
 4
      CONSTRUCT {
5
         ?s a foaf:Person
6
7
      With
8
         ?s = uri(ex:, ?id)
9
      From
10
         employees
```

Contributions

- Definition of the compact Sparqlification Mapping Language (SML) mapping language with equal expressiveness to R2RML
- A unified formal model of RDB2RDF mapping languages.
- User Study which compares SML to R2RML
- Tooling: SML/R2RML Converters and Syntax Highlighters

Outline

- Motivation
- 2 R2RML in a Nutshell
- 3 SML in a Nutshell
- 4 SML Step by Step Example
- 6 Evaluation

R2RML in a Nutshell

An **R2RML mapping** is an RDF resource that must be described with the following properties:

- Exactly one **rr:logicalTable**, which refers to the view's logical table, i.e. an SQL query, SQL table or SQL view.
- Exactly one rr:subjectMap, which defines the subject of the triples created from this mapping
- Zero or more instances of rr:predicateObjectMap, that attach a set of predicate/object pairs using rr:predicateMap and rr:objectMap to the corresponding subject.
- Each of rr:subjectMap, rr:predicateMap and rr:objectMap must be further described to specify what RDF terms to create from every row of the logical table.

Note, that R2RML offers a set of **shortcut properties**, which we do not discuss for brevity.

Example of an R2RML mapping

Generic form of an R2RML mapping without the use of shortcuts:

• R2RML Example:

Outline

- \bigcirc Motivation
- 2 R2RML in a Nutshell
- 3 SML in a Nutshell
- 4 SML Step by Step Example
- Evaluation

SML in a Nutshell

A SML view comprises:

- A name
- A CONSTRUCT clause for which quads to create
- A FROM clause for the underlying logical table.
- a WITH clause that creates RDF terms from the columns of the logical table and assigns them to variables
- Optionally, a CONSTRAINT clause, where URI prefixes of variables can be stated (can be used for pruning joins in SPARQL-to-SQL rewriters).

Example of an SML View

SML Example:

```
PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/>
    PREFIX ex: <http://example.org/>
3
    CREATE VIEW emps AS
4
       CONSTRUCT {
5
         ?s a foaf:Person
6
7
       With
8
         ?s = uri(ex:, ?id)
9
       From
10
         employees
```

Creating RDF Terms in SML and R2RML

SML RDF term constructor	R2RML term map
bNode(?COL)	<pre> [rr:column "COL" ;</pre>
bNode(expr)	<pre> [rr:template "asTemplate(expr)" ; rr:termType rr:blankNode]</pre>
uri(expr)	<pre> [rr:(constant column template) "asTemplate(expr)"; rr:termType rr:IRI]</pre>
plainLiteral(?COL)	[rr:column "COL"]
plainLiteral(expr)	[rr:template "asTemplate(expr)"]
typedLiteral(?COL, xsd:int)	[rr:column "COL" ; rr:datatype xsd:int]
<pre>typedLiteral(expression, xsd:int)</pre>	<pre> [rr:template "asTemplate(expr)" ; rr:datatype xsd:int]</pre>

Table: Transformation of SML term constructors to R2RML term maps

Outline

- Motivation
- 2 R2RML in a Nutshell
- 3 SML in a Nutshell
- 4 SML Step by Step Example
- 6 Evaluation

SML Mapping Example

- The following slides demonstrate how to map relational data to RDF with the Sparqlification Mapping Language (SML).
- Thereby, these prefixes are used:

Prefixes	
prefix	IRI
rdfs	http://www.w3.org/2000/01/rdf-schema#
ogc	http://www.opengis.net/ont/geosparql#
geom	http://geovocab.org/geometry#
lgd	http://linkedgeodata.org/triplify/
lgd-geom	http://linkedgeodata.org/geometry/

SML - Mapping Example: The Goal (1/4)

Input Table

nodes	
id	geom
1	POINT(0 0)
2	POINT(1 1)

- How to map tables to RDF?
 - How to introduce the commonly used distinction in GIS between feature and geometry?

```
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
...

lgd:node1 geom:geometry lgd-geom:node1 .
lgd:node2 geom:geometry lgd-geom:node2 .

lgd-geom:node1 ogc:asWKT "POINT(0 0)"^^ogc:wktLiteral .
lgd-geom:node2 ogc:asWKT "POINT(1 1)"^^ogc:wktLiteral .
```

SML - Mapping Example: SML Syntax Outline (2/4)

Input Table

nodes	
id	geom
1	POINT(0 0)
2	POINT(1 1)

```
Create View myNodesView As
Construct {
    ...
}
With
    ...
From
```

```
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
...
lgd:node1 geom:geometry lgd-geom:node1 .
lgd:node2 geom:geometry lgd-geom:node2 .
lgd-geom:node1 ogc:asWKT "POINT(0 0)"^^ogc:wktLiteral .
lgd-geom:node2 ogc:asWKT "POINT(1 1)"^^ogc:wktLiteral .
```

SML - Mapping Example: Construct and From (3/4)

Input Table

nodes	
id	geom
1	POINT(0 0)
2	POINT(1 1)

```
Create View myNodesView As
Construct {
    ?n geom:geometry ?g .
    ?g ogc:asWKT ?o
}
With
...
```

From nodes

```
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
...
lgd:node1 geom:geometry lgd-geom:node1 .
lgd:node2 geom:geometry lgd-geom:node2 .
lgd-geom:node1 ogc:asWKT "POINT(0 0)"^^ogc:wktLiteral .
lgd-geom:node2 ogc:asWKT "POINT(1 1)"^^ogc:wktLiteral .
```

SML - Mapping Example: Complete! (4/4)

Input Table

	nodes
id	geom
1	POINT(0 0)
2	POINT(1 1)

From nodes

```
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
...
lgd:node1 geom:geometry lgd-geom:node1 .
lgd:node2 geom:geometry lgd-geom:node2 .

lgd-geom:node1 ogc:asWKT "POINT(0 0)"^^ogc:wktLiteral .
lgd-geom:node2 ogc:asWKT "POINT(1 1)"^^ogc:wktLiteral .
```

Tooling

Website: http://sml.aksw.org

- R2RML \leftrightarrow SML converter
- Syntax Highlighters for vim and CodeMirror (a JavaScript IDE component; used in the user study).
- SML in use at LinkedGeoData and Panlex

Outline

- Motivation
- 2 R2RML in a Nutshell
- 3 SML in a Nutshell
- 4 SML Step by Step Example
- **6** Evaluation

User Study - Goals

We performed a user study with the goal to answer the following questions:

- Is SML easier to read than R2RML and does SML have a lower entry barrier than R2RML?
- Can people understand SML mappings or R2RML mappings faster?
- If given the choice, would people prefer SML or R2RML?

46 humans completed the survey of which 28 performed all tasks correctly.

User Study - Approach

- Participants first were asked to do a self-assessment on their familiarity with technologies related to RDB2RDF.
- Then they were presented 5 multiple-choice tasks each for R2RML and SML (10 tasks in total).
- Finally, after having completed the tasks, users could score their impression and preference on R2RML / SML.

User Study - Familiarity

Familiarity
The topic of RDB2RDF is (or may become) relevant for one of my projects (1=not all all 5=absolutely)
01 02 03 04 05
I am familiar with the Turtle RDF syntax (1=not at all, 2=have seen it before, 3=know some basic concepts, 4=capable of working with it, 5=can write it from scratch)
01 02 03 04 05
I am familiar with the SPARQL syntax (1=not at all, 2=have seen it before, 3=know some basic concepts, 4=can write some simple queries from scratch, 5=can write rather sophisticated queries from scratch)
○1 ○2 ○3 ○4 ○5
I am familiar with the SQL syntax (1=not at all, 2=have seen it before, 3=know some basic concepts, 4=can write some simple queries from scratch, 5=can write rather sophisticated queries from scratch)
01 02 03 04 05
I am familiar with R2RML (1=not at all, 2=have seen it before, 3=know some basic concepts, 4=capable of using it with reference information, 5=can write mappings from scratch)
○1 ○2 ○3 ○4 ○5
I am familiar with SML (1=not at all, 2=have seni the before, 3=know some basic concepts, 4=capable of using it with reference information, 5=can write mappings from cratch)
01 02 03 04 05

User Study - Task 1 - SML

User Study - Task 1 - R2RML

User Study - Readability

• I found the tasks too difficult (1=not at all 5=absolutely)
○1 ○2 ○3 ○4 ○5
• I was able to make sense of the SML mappings (1=not at all 5=absolutely)
○1 ○2 ○3 ○4 ○5
• I was able to make sense of the R2RML mappings (1=not at all 5=absolutely)
○1 ○2 ○3 ○4 ○5
• I found SML to be easily readable (1=not at all 5=absolutely)
○1 ○2 ○3 ○4 ○5
• I found R2RML to be easily readable (1=not at all 5=absolutely)
○1 ○2 ○3 ○4 ○5
I could imagine using SML for solving RDB2RDF mapping tasks (1=not at all 5=absolutely)
○1 ○2 ○3 ○4 ○5
Which of the languages did you prefer over the other? 1=strong preference for R2RML, 2=weak preference for R2RML 3=indifferent 4=weak preference for SML, 5=strong preference for SML

Results: Readability

Readability of SML better than R2RML for novices.

Results: Preference

- Novice = Self assessment in R2RML familiarity <= 3
- Expert = Self assessment in R2RML familiarity >= 4

Conclusions and Future Work

- We introduced the novel Sparqlification Mapping Language (SML) and showed how it relates to R2RML
- Evaluation shows a favor in SML by RDB2RDF novices, providing evidence that SML could simplify RDB2RDF mapping.
- We provided tooling to bridge the gap between SML and R2RML

Future Work

- More testing of the converters (WIP)
- Possibly streamline some language features, such as
 - Usage SPARQL 1.1's strdt and strlang in favor of plainLiteral and typedLiteral
 - Introduction of a FROM QUERY syntax instead of interpreting content of triple quotes as an SQL query.

SML Resources: http://sml.aksw.org

Claus Stadler cstadler@informatik.uni-leipzig.de AKSW/Uni Leipzig

Jens Lehmann lehmann@informatik.uni-leipzig.de AKSW/Uni Leipzig

http://geoknow.eu