
Publish and Subscribe for RDF
in Enterprise Value Networks

Marvin Frommhold
Agile Knowledge Engineering

and Semantic Web
Institute of Computer Science
University of Leipzig, Germany

frommhold@informatik.uni-leipzig.de

Natanael Arndt
Agile Knowledge Engineering

and Semantic Web
Institute of Computer Science
University of Leipzig, Germany

arndt@informatik.uni-leipzig.de
Sebastian Tramp

eccenca GmbH
Hainstr. 8

04109 Leipzig, Germany
sebastian.tramp@eccenca.com

Niklas Petersen
Enterprise Information Systems

Institute for Applied Computer Science
University of Bonn, Germany

petersen@cs.uni-bonn.de

ABSTRACT
Sharing information securely between business partners and
managing large supply chains efficiently will be a crucial
competitive advantage for enterprises in the near future. In
this paper, we present a concept that allows for building
value networks between business partners in a distributed
manner. Companies are able to publish Linked Data which
participants of the network can clone and subscribe to. Sub-
scribers get notified as soon as new information becomes
available. This provides a technical infrastructure for busi-
ness communication acts such as supply chain communica-
tion or master data management. In addition to the concep-
tual analysis, we provide an implementation enabling com-
panies to create such dynamic semantic value networks.

CCS Concepts
•Software and its engineering→ Publish-subscribe /
event-based architectures; •Computer systems orga-
nization→ Client-server architectures; •Information
systems→Resource Description Framework (RDF);

Keywords
Access control, Change propagation, Linked data, Publish
and subscribe, RDF, Replication

1. INTRODUCTION
Empowering enterprises to share their data securely using

semantic vocabularies and allowing them to actively push

Copyright is held by the author/owner(s).
WWW2016 Workshop: Linked Data on the Web (LDOW2016)

new information (updates) to connected business partners
is the main goal of the LUCID research project1. Being
able to create dynamic semantic value networks improves the
sharing of information between business partners as well as
enhances the management of complex supply chains. Mas-
tering such value-added supply chains is a critical success
factor, especially in the context of the recent Industry 4.0
movement [7].

For example, the SCORVoc vocabulary presented in [14]
provides an RDF representation of the cross-industry Sup-
ply Chain Operation Reference (SCOR). It aims at reducing
the complexity in supply chain management through seman-
tic clarity. However, the tools currently available on the
market struggle meeting the demands of secure and proac-
tive distribution of crucial KPI (key performance indicator)
information, especially serialized in RDF, among business
partners.

In this paper, we present the concept and implementation
of such a tool based on a publish-subscribe approach. It
allows enterprises to publish RDF data as well as to sub-
scribe to published data of other business partners to get
notified as soon as new information becomes available. Au-
thentication and authorization mechanisms are included to
guarantee secure access to the published data. Furthermore,
our proposed solution includes a versioning component for
RDF change detection and an efficient propagation of chang-
ing data. Additionally, provenance information is added to
the exchanged data assuring a minimum level of trust.

This paper is structured as follows: We give an overview
of the challenges and the resulting requirements in section 2.
The concept of our approach is presented in section 3, fol-
lowed by the implementation in section 4. We report on
related work in section 5 before we conclude with an out-
look on future work in section 6.

2. CHALLENGES
We now present the challenges we have to tackle in the

context of the LUCID research project. For each challenge,
we provide a set of specific requirements demanded by busi-

1http://www.lucid-project.org/

http://www.lucid-project.org/

ness partners to enable them to share their data in dynamic
value networks.

Open Standards.
As value networks should enhance the data distribution in

terms of experience and reliance between the participants,
it is crucial to rely on open, lightweight, and in case of
the data, semantic standards. This ensures interoperabil-
ity and allows every business partner to adapt its custom
applications to be able to connect to other participants of
a value network and share its data. The Resource Descrip-
tion Framework (RDF) [8], whose main goal is to provide a
“vendor-neutral and operating system-independent system
of metadata”2, fulfills our requirements on interoperability
and participation and thus was chosen as our data model.

On Demand Communication.
Each participant of a value network should be able to act

as a source of data (publisher) as well as a consumer of data
(subscriber). As participants of a value network connect
or disconnect to each other on demand, there must be a
specified mechanism to subscribe to or unsubscribe from the
data of a publisher. A publisher must be able to inform all
subscribers that its data has changed as soon as possible.
This results in the need for a tool to publish RDF data and
a service to manifest one’s interest in updates of an RDF
data publisher.

Provenance.
A value network must guarantee the traceability of the

published data to fulfill the notion of provenance3. All par-
ticipants of a value network must be able to trace back the
origin of the exchanged data. The authenticity and integrity
of the data must be ensured, emphasizing the need for pro-
tection against unperceived manipulation of the data. Par-
ticipants must be able to sign the exchanged data to in-
crease the level of trust. These considerations lead to the
requirements of a shared RDF vocabulary for provenance in-
formation and a tool to sign and check the validity of RDF
data.

Access Control.
The security of the data and secure access to the data

are essential in the enterprise context. A publisher must
have the ability to exchange its data under restricted con-
ditions. For this reason, authentication and authorization
mechanisms with the possibility to integrate custom solu-
tions must be provided. When two participants connect to
each other, the subscriber is authenticated and authorized.
Therefore, publishers of the value network need a tool to
authorize access to their RDF data.

Change Detection.
Publishers should be able to detect changes made to their

data and share the change information with their subscribers.
To enable sharing of any kind of RDF data, the change de-
tection must support all features of RDF. Due to the seman-
tics of blank nodes, special emphasis needs to be taken to
guarantee their addressability outside the original graph [9].

2https://www.w3.org/Press/RDF
3https://www.w3.org/2005/Incubator/prov/
XGR-prov-20101214/

In detail, participants need a shared RDF vocabulary for
tracking changes to RDF data and a tool to detect changes
made to RDF datasets.

The RDF data model enables a diversified and flexible
representation of data. The concept of RDF named graphs
allows to group parts of the data into logical units enabling
different views on the data. Based on our experience, RDF
named graphs represent the easiest manageable unit. There-
fore, we only consider RDF named graphs as central view on
the data regarding access, change tracking and publication.

3. PUBLISH AND SUBSCRIBE FOR RDF
As presented before, our main motivation is the on de-

mand proactive notification of changes made to specific sets
of RDF data in a distributed communication network. That
means, instead of asking the data source for changes in a
regular interval (pull), the interested entity is actively noti-
fied about any change (push). To realize this approach, we
rely on PubSubHubbub [6], an open, decentralized publish-
subscribe protocol. Adapted to our requirements of propa-
gating changes made to RDF graphs, the workflow is defined
as follows:

Subscribe: An interested entity (subscriber) sends a sub-
scription containing the URI of the RDF graph of in-
terest and a callback URL to the advertised server
(hub) of the owner of the RDF dataset (publisher).

Publish: In case of a change to the dataset, the publisher
informs its hub about the affected RDF graphs.

Notify: The hub looks up all subscriptions and notifies the
affected subscribers by sending the changes to a graph
as a diff (added and deleted triples).

We have designed this workflow to use the features of the
eccenca DataPlatform4 as it provides the base functional-
ity helping us to address the mentioned challenges including
context-based access control for RDF graphs and versioning
for arbitrary RDF data. However, as noted in the challenges,
the eccenca DataPlatform can be replaced with other tools
providing the needed features. In the following, we present
a more detailed overview of our concept with particular ref-
erences to the challenges of section 2. We thereby only con-
sider the subscription to and propagation of changes to RDF
graphs. A priori reading or importing of published data on
subscriber’s side is not in the scope of our concept.

3.1 Subscription
To get notified about changes made to a specific graph of

a dataset, the subscriber sends a subscription request to the
hub of the publisher as described in section 5 of [6] with some
specific adjustments to support our approach. The value of
the hub.topic request parameter must be the URI of the
graph the subscriber wants to get notified about changes. To
tackle the challenge of access control, the protocol’s optional
subscription validation is a mandatory step in our communi-
cation. A subscription is only valid if the subscriber is suc-
cessfully authenticated and authorized to read the requested
graph. In case of a valid subscription, the hub saves the sub-
scription in a persistent storage. Other features such as the

4https://www.eccenca.com/en/products/linked-data-suite.
html

https://www.w3.org/Press/RDF
https://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
https://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
https://www.eccenca.com/en/products/linked-data-suite.html
https://www.eccenca.com/en/products/linked-data-suite.html

subscription process (subscription response and verification)
as well as unsubscribing are implemented as described in the
PubSubHubbub specification.

Access Control.
To be able to validate if a subscriber has the permission to

subscribe to a specific RDF graph, it needs to authenticate
itself. We rely on the eccenca DataPlatform using OAuth
2.05 for authentication with support for various authenti-
cation providers such as an LDAP6 directory server. To
represent the access control rules, we use the eccenca Autho-
rization Vocabulary7. It allows dataset publishers to define
context-based access conditions (eccauth:AccessCondition)
on the level of RDF graphs. A subscriber is authorized to
read and therefore allowed to subscribe to a specific graph
if the graph URI is contained in the set of readable graphs
defined by the property eccauth:readGraph of all fulfilled
access conditions. An access condition is fulfilled, if all re-
quired attributes attached to it (by sub-properties of ec-

cauth:requiresAttribute) are met by the session of the
authenticated subscriber.

3.2 Publication
When a dataset is updated, all designated hubs need to be

informed about the changes. For this, the publisher requires
a change detection system for RDF data that, according to
the challenges, must support any RDF dataset even in the
presence of blank nodes and a vocabulary to describe the
changes in RDF. We use the change detection system of the
eccenca DataPlatform that creates a patch for each updated
graph containing the added and removed triples and addi-
tional meta-information. Additionally, patches created by
the system provide full blank node support by adding the
context for each added or removed triple containing blank
nodes. Blank node support plays an important role con-
sidering that over 50% of published datasets contain blank
nodes [9]. To tackle the challenge of trust, a publisher can
optionally certify a patch. This is done by signing its hash
value and then attaching the digital signature to the patch
by, for instance, using the Cert Ontology8. The patches are
send separately to the advertised hub(s) of the publisher.

Versioning.
To be able to notify the hub(s) about changes, the pub-

lisher needs to detect changes made to its dataset. To achieve
this, we use the versioning functionality we have developed
as part of the eccenca DataPlatform. For each update, the
system detects the added or removed triples and creates one
patch per graph. The patches are represented as instances of
eccrev:Commit of the eccenca Revision Vocabulary9. The
vocabulary is based on the structure of the Delta ontology10

and reuses concepts of the PROV-O ontology11. By pro-
viding the author (eccrev:commitAuthor), change reason
(eccrev:commitMessage) and a time stamp (prov:atTime)
we argue that such a patch fulfills the notion of provenance.

5http://tools.ietf.org/html/rfc6749
6https://tools.ietf.org/html/rfc4511
7https://vocab.eccenca.com/auth/
8http://www.w3.org/ns/auth/cert#
9https://vocab.eccenca.com/revision/

10https://www.w3.org/DesignIssues/Diff
11https://www.w3.org/TR/prov-o/

Moreover, the system calculates a hash value for each patch
(eccrev:sha256) using the algorithm described in [3]. To
allow for attaching arbitrary meta-information to a patch,
our system limits the properties used for hash calculation to
a fixed set. This hash value allows for verifying the integrity
of a patch. As each patch contains a reference and a hash
value of its predecessor, the system offers protection against
unperceived history manipulation.

3.3 Notification
For notification, we rely on the PubSubHubbub content

distribution request as described in section 7 of [6] with spe-
cific modifications. For each patch received from a publisher,
the hub must perform an authorization check ensuring the
validity of a subscription, which includes a check if the sub-
scriber is still allowed to read the graph referenced in the
patch. If the subscription is valid, the hub sends a notifica-
tion to the affected subscriber’s callback URL, else the sub-
scription is canceled. The patch is serialized into an official
RDF serialization format and added as body of the notifi-
cation. The Content-Type header must be set according to
the used serialization format. Sending only a patch instead
of the complete changed RDF graph is generally more space
efficient and a client does not have to perform the delta cal-
culation by itself. Before applying the patch, the subscriber
must validate the integrity of the received patch by using the
same hash calculation algorithm as used by the publisher.
If the integrity of a patch is valid, the subscriber applies
the patch to its copy of the appropriate graph as follows:
(i) remove all triples marked as deleted; and (ii) insert all
triples marked as added. This order ensures the correct ap-
plication of the patch, especially if changes involving blank
nodes were made . Optionally, the subscriber can save the
patch to be able to retrace the change history at a later date.

Due to space limitations, we do not discuss security issues
for the communication between the subscribers, publishers
and hubs. However, we want to refer to the usage of HTTPS
as described in [6] which is fully compatible with our pro-
posed concept.

4. IMPLEMENTATION
The proposed publish-subscribe concept is integrated into

the eccenca DataPlatform which is a Java Spring12 applica-
tion acting as a proxy in front of one or more RDF reposi-
tories. Thus, it enables consistent publication of RDF data
across various repositories according to the five-star deploy-
ment scheme13.

In our implementation the publisher, subscriber and hub
are part of the eccenca DataPlatform. The communication
between these three components is realized through the use
of Spring Integration14. This enables a lightweight messag-
ing within the application and further supports the integra-
tion into external systems as well. In our case we use Apache
Kafka15 as messaging server to ensure scalability, stability
and backup of the communication within the application.

An architectural overview of our implementation is de-
picted in Figure 1. An exemplary workflow starts with a new
subscription message from the subscriber to its hub (1). The

12https://projects.spring.io/spring-framework/
13http://www.w3.org/DesignIssues/LinkedData.html
14http://projects.spring.io/spring-integration/
15http://kafka.apache.org/

http://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc4511
https://vocab.eccenca.com/auth/
http://www.w3.org/ns/auth/cert#
https://vocab.eccenca.com/revision/
https://www.w3.org/DesignIssues/Diff
https://www.w3.org/TR/prov-o/
https://projects.spring.io/spring-framework/
http://www.w3.org/DesignIssues/LinkedData.html
http://kafka.apache.org/

hub then authenticates itself in the name of the subscriber
at the advertised hub of the publisher and sends a PubSub-
Hubbub subscription request (2). The hub of the publisher
hands over the subscription request for validation to the pub-
lisher (3) that validates the authorization of the subscriber
with the help of the access control component (4). In case
of success, the publisher informs its hub (5) that verifies the
subscription (6) before storing it in the local RDF reposi-
tory (7). If an update is made to the subscribed data (8),
the versioning component creates a patch (9) and informs
the publisher about the change (10). The publisher sends
a change notification to its hub (11) that validates for each
affected subscription if it is still authorized to get updates
(12). In the positive case, the hub sends a PubSubHubbub
content distribution request to the affected subscriber hubs
(13), else the subscription is canceled. The subscriber hub
now informs its subscriber (14) that checks the integrity of
the patch before applying it to its data (15). When applying
patches, especially in the presence of blank nodes, it must be
ensured, with respect to non-lean graphs and isomorphism,
that the correct triples get removed.

5. RELATED WORK
Various approaches have been presented in the area of

change propagation for RDF data. The proposed publish
and subscribe systems can be divided into two categories:
distributed peer-to-peer systems [2, 4, 16, 13] and client-
server systems [18, 12, 15, 17, 1, 5].

In general, the peer-to-peer approaches are based on broad-
casting subscriptions and change notifications between the
participants of the network. Peers able to contribute to a
subscription broadcast their changed data through the net-
work, whereby changed data gradually arrives at the sub-
scriber. Due to the requirement of a secure communica-
tion of the data, peer-to-peer systems are not rejected per
se, however, all publications rely on approaches distributing
the data freely readable between the network participants.
Therefore this type of architecture is not advisable for en-
terprise value networks where sensitive data is exchanged.

In contrast to peer-to-peer systems, client-server systems
provide direct real-time notification allowing a secure change
propagation between the participants. RDFSync [18] pro-
vides an update synchronization for RDF data similar to
the rsync utility with support for blank nodes by consider-
ing their context. We’ve used the RDFSync algorithms in
our versioning component to support blank nodes. However,
their approach uses pull requests with a lack of real-time no-
tifications in case of a change event. DSNotify [15] offers a
framework to notify about broken links in two datasets, but
the subscriber needs to detect the changes by itself. The
proposed sparqlPuSH system of [12] uses the PubSubHub-
bub protocol to inform about changed RDF data based on
SPARQL query subscriptions. The main disadvantage of
their approach is the execution of all subscription queries
against the data when an update occurs, which can lead to
performance problems in case of a large dataset and many
subscriptions. The approaches of [17, 1] also use PubSub-
Hubbub as communication protocol for the synchronization
of RDF data. Unfortunately, these systems are limited to
specific RDF structures, e.g. resources describing social net-
work activities, not supporting arbitrary RDF data includ-
ing blank nodes. The approach of [5] based on the iRap

framework provides a way to subscribe to changes based on
a subset of SPARQL queries. Their system is similar to
ours, however, due to their restriction of possible queries,
users are not able to subscribe to changes of specific graphs.

The work of [10, 6, 11] provide specifications for pub-
lish and subscribe protocols addressing the notification is-
sue. Notifications about events are pushed to interested
clients via hubs. The PubSubHubbub specification [6] is
simple, well documented and provides a detailed installa-
tion description and thus was chosen for our approach.

6. CONCLUSIONS AND FUTURE WORK
By empowering enterprises to create dynamic semantic

value networks based on open standards for publishing data,
they are able to improve the sharing of information between
their business partners and to enhance the management of
complex supply chains. In this paper, we presented a con-
cept allowing the creation of such value networks. We used
the existing components for access control and versioning
of RDF data of the eccenca DataPlatform and integrated
the publish-subscribe approach to create a tool tackling the
mentioned challenges.

However, first system deployments have yield to issues
and questions hampering a wide deployment in enterprises
without any concerns. First, there is a need for a more
flexible solution regarding authentication, for example based
on WebID16. For now business partners have to manually
agree on and maintain the credentials used to authenticate
among each other. Secondly, and of particular interest, is the
question of how to deal with changing permissions, especially
if a previous granted read access is withdrawn. Is it enough
to just cancel the affected subscriptions or do publishers
want to perform additional steps?

7. ACKNOWLEDGMENTS
This work was partly supported by the following grants

from the German Federal Ministry of Education and Re-
search (BMBF) for the LUCID Project (GA no. 01IS14019A)
as well as for the the LEDS Project (GA no. 03WKCG11A
and GA no. 03WKCG11C).

8. REFERENCES
[1] N. Arndt and S. Tramp. Xodx: A node for the

distributed semantic social network. In International
Semantic Web Conference, Aachen, Germany,
Germany, 2014.

[2] M. Cai, M. Frank, B. Yan, and R. MacGregor. A
subscribable peer-to-peer RDF repository for
distributed metadata management. Journal of Web
Semantics, 2004.

[3] J. J. Carroll. Signing RDF graphs. In Internatinal
Semantic Web Conference. 2003.

[4] P.-A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl.
Publish/Subscribe for RDF-based P2P networks. In
The Semantic Web. 2004.

[5] K. M. Endris, S. Faisal, F. Orlandi, S. Auer, and
S. Scerri. Interest-Based RDF update propagation. In
International Semantic Web Conference. 2015.

16https://www.w3.org/2005/Incubator/webid/spec/

https://www.w3.org/2005/Incubator/webid/spec/

eccenca Dat aPl at f or m

RDF Reposi t or y

eccenca Dat aPl at f or m

Access
Cont r olVer si oni ng

 Hub Hub

Subscr i ber

Publ i sher

RDF r eposi t or y

1

2

115

6

12
13 14

15

3

410

8

9 7

communicat ion
over message channel

direct
communicat ion

Figure 1: Architectural overview of our implementation.

[6] B. Fitzpatrick, B. Slatkin, M. Atkins, and
J. Genestoux. PubSubHubbub core 0.4 – working
draft. Technical report, 4 Feb. 2014.

[7] H. Kagermann, J. Helbig, A. Hellinger, and
W. Wahlster. Recommendations for implementing the
strategic initiative INDUSTRIE 4.0: Securing the
future of german manufacturing industry. Technical
report, 2013.

[8] G. Klyne and J. J. Carroll. Resource description
framework (RDF): Concepts and abstract syntax.
W3C Recommendation, 10 Feb. 2004.

[9] A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On
blank nodes. In International Semantic Web
Conference. 2011.

[10] P. Millard, P. Saint-Andre, and R. Meijer. XEP-0060:
Publish-Subscribe. Technical report, 12 July 2010.

[11] Object Management Group. Data distribution service
(DDS) version 1.4. Technical report, 2015.

[12] A. Passant and P. N. Mendes. sparqlPuSH: Proactive
notification of data updates in RDF stores using
PubSubHubbub. In Extended Semantic Web
Conference, 2010.

[13] L. Pellegrino, F. Huet, F. Baude, and A. Alshabani. A
distributed Publish/Subscribe system for RDF data.
In Data Management in Cloud, Grid and P2P
Systems. 2013.

[14] N. Petersen, I. Grangel-González, G. Coskun, S. Auer,
M. Frommhold, S. Tramp, and M. LeFrancois.
SCORVoc: Vocabulary-based information integration

and exchange in supply networks. IEEE International
Conference on Semantic Computing, 2016.

[15] N. P. Popitsch and B. Haslhofer. DSNotify: Handling
broken links in the web of data. In International
World Wide Web Conference, 2010.

[16] D. Ranger and J.-F. Cloutier. Scalable Peer-to-Peer
RDF query algorithm. In Web Information Systems
Engineering. 2005.

[17] S. Tramp, P. Frischmuth, T. Ermilov, S. Shekarpour,
and others. An architecture of a distributed semantic
social network. The Semantic Web, 2014.

[18] G. Tummarello, C. Morbidoni, R. Bachmann-Gmür,
and O. Erling. RDFSync: Efficient remote
synchronization of RDF models. In The Semantic
Web. 2007.

