
 Complex Schema Mapping and Linking Data:
Beyond Binary Predicates

Jacobo Rouces
Aalborg University

jacobo@rouces.org

Gerard de Melo
Tsinghua University
gdm@demelo.org

Katja Hose
Aalborg University
khose@cs.aau.dk

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 2

Overview

● Data Heterogeneity in the LOD Cloud

● FrameBase

● Creation of complex mappings with FrameBase hub

● Conclusion & Future Work

04/12/16 Rouces, De Melo, Hose – FrameBase 3

Data Heterogeneity in the LOD Cloud

Using Direct Binary Relations (used as “default” mode in most KBs)

04/12/16 Rouces, De Melo, Hose – FrameBase 4

Data Heterogeneity in the LOD Cloud

RDF reification (YAGO)

04/12/16 Rouces, De Melo, Hose – FrameBase 5

Data Heterogeneity in the LOD Cloud

Using “eventive” subproperties
(Nguyen et al, WWW 2014)

04/12/16 Rouces, De Melo, Hose – FrameBase 6

Ad-hoc and few...

Data Heterogeneity in the LOD Cloud

Neo-davidsonian representations
(used to an extent in
most KBs that include events.
E.g. Freebase)

04/12/16 Rouces, De Melo, Hose – FrameBase 7

Linking What?

same as

same assame as

same as

04/12/16 Rouces, De Melo, Hose – FrameBase 8

Linking What?

same as

same assame as

if(f)

04/12/16 Rouces, De Melo, Hose – FrameBase 9

Linking What?

same as
same as

same as

? ?

?

04/12/16 Rouces, De Melo, Hose – FrameBase 10

Linking What?

● Linking data is not linking entities
● Current efforts focus mostly on linking entities

one to one

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 11

FrameBase
schema

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 12

FrameBase: schema
● Core: RDFS schema to represent knowledge using neo-Davidsonian approach

with a wide and extensible vocabulary of

– Frames. In a hierarchy. Frames are “events, situations, eventualities…”

– Frame Elements. Outgoing properties representing frame-specific semantic roles

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 13

FrameBase
schema

● Vocabulary based on NLP resources (FrameNet+WordNet)
– This provides connection with natural language and semantic role labeling

systems. It clusters near-equivalents.

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 14

FrameBase
schema

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 15

FrameBase
schema

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 16

FrameBase: ReDer rules
● Two-layered structure:

☞ Create two levels of reification, and Reification-Dereification (ReDer)
inference rules (horn clauses) that connect them.

● Reified knowledge using frames and frame elements
● Dereified knowledge using direct binary predicates (DBPs)

● Currently ~15000 rules/DBPs

?f a :frame-Separating-partition.v
AND
?f :fe-Separating-Whole ?s
AND
?f :fe-Separating-Parts ?o
IFF
?s ..-isPartitionedIntoParts ?o

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 17

FrameBase
Example

:frame-Win_prize-win.v

 ...-competitor

yago:A_Einsteinyago:Nobel_Prize

fe-Win_prize-competition
fe-Win_prize-prize

1921^xsd:date

...-time

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 18

FrameBase
Example

:frame-Win_prize-win.v

 ...-competitor

yago:A_Einsteinyago:Nobel_Prize

fe-Win_prize-competition
fe-Win_prize-prize

1921^xsd:date

...-time

yago:Photoelectric_effect

...-explanation

frame:Working_on-work.n

fe-Working_on-agent

 ...-domain

...-time

1905^xsd:date

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 19

FrameBase
Example

:frame-Win_prize-win.v

 ...-competitor

yago:A_Einsteinyago:Nobel_Prize

fe-Win_prize-competition
fe-Win_prize-prize

1921^xsd:date

...-time

winsByCompetitor

 winsAtTime
 isWonAtTime

yago:Photoelectric_effect

...-explanation

frame:Working_on-work.n

fe-Working_on-agent

 ...-domain

...-time

1905^xsd:date

 worksAtTime

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 20

Creation of complex mappings

● Complex mappings between FrameBase and external KBs.
Built in three steps:

1. Creating ReDer rules

and DBPs in FrameBase

2. Canonicalizing predicate

names from external Kbs

3. Matching DBPs with

external predicate names

?f a :frame-Separating-partition.v
AND ?f :fe-Separating-Whole ?s
AND ?f :fe-Separating-Parts ?o
IFF ?s ..-isPartitionedIntoParts ?o

?f a :frame-Separating-partition.v
AND ?f :fe-Separating-Whole ?s
AND ?f :fe-Separating-Parts ?o
IFF ?s somekb:splitInto ?o

somekb:splitInto
→
somekb:isSplitInto

sim('is split into',
 'is partitioned into parts')

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 21

Creation of complex mappings
Step 1. Creating DBPs in FrameBase

● In [1], DBPs are created with verbs and nouns as heads. We extend the approach to
to deal with adjectives as well.

● We use syntactic annotations from FrameNet

[1] J. Rouces, G. de Melo and K. Hose. FrameBase: Representing N-ary Relations using Semantic Frames. In:
Proc. 12th Extended Semantic Web Conference (ESWC 2015) http://goo.gl/EDomXq

http://goo.gl/EDomXq

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 22

Creation of complex mappings
Step 1. Creating DBPs in FrameBase

● In [1], DBPs are created with verbs and nouns as heads. We extend the approach to
to deal with adjectives as well.

● We use syntactic annotations from FrameNet

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 23

Creation of complex mappings
Step 2. Canonicalizing predicate names from external Kbs

Apply a set of rules for name transformations:

– If the name p of a property is a past participle, it can be extended
with the prefix “is” (without postfix “of”). Ex: “created” → “is
created”

– If the name p of a property is a noun or a noun phrase, and a
range is declared for the property, let X be a set containing p’s
name and the hypernyms of all its word senses (obtained from
WordNet). If for any element x in X, p is a substring of x or x is a
substring of p, then p can be extended with the prefix “has”. Ex:
“creator” with range ”person” → “has creator”

– The same rule as above, but using the domain instead of the
range, which allows p to be extended with the prefix “is” and
postfix “of”. Ex: “creator” with domain “person” → “is creator of”

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 24

Creation of complex mappings
Step 2. Canonicalizing predicate names from external Kbs

– If the property is symmetric, we can introduce extensions both
with “has” and with “is”+ . . . +“of”. Ex: “sibling” is owl:symmetric →
“has sibling”, “is sibling of”,

– For every property p corresponding to the pattern “is X of”, an
inverse property can be created of the form “has X”. Ex: “is mentor
of” → ^“has mentor”

– For every property p corresponding to the pattern “has X”, an
inverse property can be created of the form “is X of”. Ex: “has
mentor” → ^“is mentor of”

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 25

Creation of complex mappings
Step 3. Matching DBPs with external predicate names

For each canonicalized Source Dataset Property (SDP),
maximize over all DBPs:

0.7 0.1 0.1 0.1

“core” properties
in reified pattern

bag of words
domain, range, etc

bag of words
labels

● 0.1's for resolving ties
● Difficult to use supervised ML: very low IA agreement for gold standards

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 26

Creation of complex mappings
Results

Source property Canonicalized

currently run by is currently run by

golden raspberry award has golden raspberry award

statistic is statistic of

link title has link title

first leader has first leader

● Canonicalized properties from source KB (DBpedia)
– Examples:

Precision: 85%

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 27

Creation of complex mappings
Results

CONSTRUCT {
 _:r a :frame-Appearance-smell.v .
 _:r :fe-Appearance-Phenomenon ?S .
 _:r :fe-Appearance-Characterization ?O .
} WHERE {
 ?S <http://dbpedia.org/property/smellsLike> ?O .
}

CONSTRUCT {
 _:r a :frame-Residence-reside.v .
 _:r :fe-Residence-Resident ?S .
 _:r :fe-Residence-Location ?O .
} WHERE {
 ?S <http://dbpedia.org/property/residesIn> ?O .
}

CONSTRUCT {
 _:r a :frame-Education_teaching-school.v .
 _:r :fe-Education_teaching-Student ?S .
 _:r :fe-Education_teaching-Skill ?O .
} WHERE {
 ?S <http://dbpedia.org/property/schooledAt> ?O .
}

● Integration rules
(DBpedia)

– Examples:

Precision: 79%

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 28

Conclusion & Future Work

● We create complex mappings between properties in
external KBs and “reified” property-frame-property patterns
in FrameBase.

● Future work:
● Combining with traditional one-to-one mappers

(class-class, property-property)
– This produces transitive complex maps between

arbitrary external KBs
● More very-complex maps

– (becomes/seems Adj → Noun → Verb)

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 29

Conclusion & Future Work

● Web interface for semi-automatic integration (IJCAI 16 demo)

04/12/16 Rouces, De Melo, Hose – FrameBase – LDOW16 30

Questions

More information at http://framebase.org

http://framebase.org/

