Discovering Spatial and Temporal Links among RDF Data

Panayiotis Smeros and Manolis Koubarakis

WWW2016 Workshop: Linked Data on the Web (LDOW2016) April 12, 2016 - Montréal, Canada HELLENIC REPUBLIC National and Kapodistrian University of Athens

- Introduction
- Background
- Developed Methods
- Implementation
- Experimental Evaluation
- Conclusions

Spatial and Temporal Link Discovery

Establish semantic relations (links) between entities

Enrich the information of datasets with Geospatial and Temporal characteristics

12/04/2016

From Locations to Complex Geometries

- Geonames, OpenStreetMap, etc. are dominated by location (point) information
- GeoSPARQL Standard
- Datasets with rich geospatial and temporal information
 - Corine Land Cover (http://datahub.io/dataset/corine-land-cover)
 - Urban Atlas (http://datahub.io/dataset/urban-atlas)
 - Products from Satellite Images (<u>http://datahub.io/dataset/sentinel2</u>)
- State-of-the-art works focus on distance based (similarity) relations

More spatial and temporal relations can be discovered!

Link Discovery in Fire Monitoring (Example)

Link Discovery in Fire Monitoring (Example)

Link Discovery in Fire Monitoring (Example)

12/04/2016

- _:1 rdf:type geo:Geometry .
- _:1 geo:hasGeometry

"<http://www.opengis.net/def/crs/EPSG/0/4326>
POINT(10 20)"^^geo:wktLiteral .

- _:1 rdf:type strdf:Geometry .
- _:1 strdf:hasGeometry

"<gml:Point crsName="EPSG:2100"><gml:coordinates>10,20
</gml:coordinates></gml:Point>"^^strdf:GML .

- _:1 rdf:type wgs84Geo:Point .
- _:1 wgs84Geo:lat "10"^^xsd:double .
- _:1 wgs84Geo:long "20"^^xsd:double .

- _:1 rdf:type geo:Geometry .
- _:1 geo:hasGeometry

"<http://www.opengis.net/def/crs/EPSG/0/4326>

POINT(10 20)"^^geo:wktLiteral .

- _:1 rdf:type strdf:Geometry .
- _:1 strdf:hasGeometry

"<gml:Point crsName="EPSG:2100"><gml:coordinates>10,20

Discovering Spatial and Temporal Links among RDF Data

</gml:coordinates></gml:Point>"^^strdf:GML .

• Different Vocabularies

- Different Vocabularies
- Different Serializations of Geometries

- Different Vocabularies
- Different Serializations of Geometries
- Geometries expressed in Different Coordinate Reference Systems (CRS)

- Different Sampling Values
- Different Granularity
- Different Rounding Effects

Heterogeneity: Temporal Datasets

_:1 ex:hasBirthday "1989-09-24T11:05:00+01:00"xsd:dateTime

Heterogeneity: Temporal Datasets

_:1 ex:hasBirthday "1989-09-24T11:05:00+01:00"xsd:dateTime

Different Vocabularies

- Different Vocabularies
- Different Time Zones

- Different Vocabularies
- Different Time Zones
- Time Instants and Periods

- Introduction
- Background
- Developed Methods
- Implementation
- Experimental Evaluation
- Conclusions

Let *S* and *T* be two sets of entities and *R* the set of relations that can be discovered between entities. For a relation $r \in R$, w.l.o.g., we define a distance function d_r and a distance threshold θ_{d_r} as follows:

$$d_r: S \times T \rightarrow [0,1]$$
, $\theta_{d_r} \in [0,1]$

We define the set of discovered links for relation r (DL_r) as follows:

$$DL_r = \{ (s, r, t) \mid s \in S \land t \in T \land d_r(s, t) \le \theta_{d_r} \}$$

State-of-the-art Spatial Relations

- Dimensionally Extended
 9-Intersection Model
- Egenhofer's Model
- OGC Simple Features Model

Intersects, Overlaps, Equals, Touches, Disjoint, Contains, Crosses, Covers, CoveredBy and Within

- Region Connection Calculus
 e.g., RCC8
- Cardinal Direction Calculus

State-of-the-art Temporal Relations

Allen's Interval Calculus

Relation	Illustration
X before Y	X
Y after X	Y
X meets Y	X
Y $\mathbf{isMetBy}$ X	Y
X overlaps Y	X
Y isOverlappedBy X	Y
X starts Y	X
Y isStartedBy X	Y
X during Y	X
Y contains X	Y
X finishes Y	X
Y isFinishedBy X	Y
X equals Y	X Y

- Introduction
- Background
- Developed Methods
- Implementation
- Experimental Evaluation
- Conclusions

Introduced Relations

- Spatial (R_s) , Temporal (R_t) , Spatiotemporal (R_{st}) relations
- Subsets of Boolean relations (R_B)

 $R_s, R_t, R_{st} \subset R_B \subset R$

• R_B constitutes a special subset of R. The distance function d_r and the distance threshold θ_{d_r} for a relation $r \in R_B$ are defined as follows:

$$d_r(\mathbf{s},\mathbf{t}) = \begin{cases} 0 & if \ r \ holds \\ 1 & elsewhere \end{cases}, \quad \theta_{d_r} = 0$$

Introduced Transformations (1/2)

- Vocabulary Transformation
 - converts the vocabulary of geometry literals into GeoSPARQL
- Serialization Transformation
 - converts the serialization of geometries into WKT
- CRS Transformation
 - converts the CRS of geometries into the World Geodetic System (WGS 84)
- Validation Transformation
 - converts not valid geometries (e.g., self-intersecting polygons) to valid ones
- Simplification Transformation
 - simplifies geometries according to a given distance tolerance

Introduced Transformations (2/2)

- Envelope Transformation
 - computes the envelope (minimum bounding rectangle) of geometries
- Area Transformation
 - computes the area of geometries in square metres
- Points-To-Centroid Transformation
 - computes the centroid of a cluster of points
- Time-Zone Transformation
 - converts the time zone of time elements to Coordinated Universal Time (UTC)
- **Period** Transformation
 - converts time instants to periods with the same starting and ending point

Techniques for Checking the Relations

- Cartesian Product Technique (Naive)
 - Exhaustive checks between the pairs of the entities of datasets
 - Complete
 - Complexity: O(ISIITI) checks
- Blocking Technique
 - Decreases the number of checks
 - Divides the entities into blocks
 - Complexity: O(ISIITI) checks (worst case), O(ILI) checks (best case)

* ISI, ITI: number of entities in datasets S and T; ILI: number of links between datasets S and T

Blocking Technique (algorithm)

- 1. Divide the surface of the earth into curved rectangles / the time into intervals (blocks)
- 2. Adjust the size of the blocks with a blocking factor (*sbf* or t*bf*)
- **3. Insert** the entities into the corresponding blocks

- 4. Check for the actual relation within each block
- 5. Aggregate the links from all the blocks to construct DL_r

Blocking Technique (algorithm)

Blocking Technique (algorithm)

- 1. Divide the surface of the earth into curved rectangles / the time into intervals (blocks)
- 2. Adjust the size of the blocks with a blocking factor (*sbf* or t*bf*)
- **3. Insert** the entities into the corresponding blocks

- 4. Check for the actual relation within each block
- 5. Aggregate the links from all the blocks to construct DL_r

Blocking Technique (accuracy)

Sound and complete

• Precision =
$$\frac{TDL}{TDL+FDL} = \frac{TDL}{TDL} = 100\%$$

• $Recall = \frac{TDL}{TDL + FNDL} = \frac{TDL}{TDL} = 100\%$

TDL: True Discovered Links

FDL: False Discovered Links

FNDL: False Not Discovered Links

Guaranteed 100% accurate links

- Introduction
- Background
- Developed Methods
- Implementation
- Experimental Evaluation
- Conclusions

Extensions to the Silk Framework

Extensions to the Silk Framework

- Implemented as Plugins
- **Transparent** to all the applications of Silk (Single Machine, MapReduce and Workbench)
- Included in the the default Silk distribution (from release 2.6.1 and above)
- <u>https://github.com/silk-framework/silk</u>

- Introduction
- Background
- Developed Methods
- Implementation
- Experimental Evaluation
- Conclusions

Real-world Scenario (Fire Monitoring)

- Which fires (hotspots) threaten forests?
- Which municipalities are threatened by fires?

		Geometries		Time Elements	
Dataset	#Entities	Туре	#Points	Туре	#Instants
Municipalities from Greek Administrative Geography (GAG)	325	Polygons	979,929	Periods	650
Forests from CORINE Land Cover of Greece (CLCG)	4,868	Polygons	8,004,058	Periods	9,736
Hotspots of Greece (HG)	37,048	Polygons	148,192	Instants	37,048

 Using Silk: Discover the relation intersects between HG-GAG and HG-CLCG

Real-world Scenario (Fire Monitoring)

12/04/2016

- Single machine environment
 - 2 Intel Xeon E5620 processors, 12MB L3 cache, 2.4 GHz, 32 GB RAM, RAID-5. 4 disks, 32 MB cache, 7200 rpm
- Distributed environment
 - cluster provided by the European Public Cloud Provider Interoute (1 Master Node + 20 Slave Nodes: 2 CPUs, 4GB RAM, 10GB disk)

More details: <u>http://silk.di.uoa.gr</u>

Experiment 1: Adjusting the Spatial Blocking Factor (sbf)

Experiment 2: Adjusting the number of Entities per Dataset

- Introduction
- Background
- Developed Methods
- Implementation
- Experimental Evaluation
- Conclusions

Conclusions & Future Work

- Methods for Spatial and Temporal Link Discovery
- Implementation on the Silk framework
- Employed efficiently in Real-World Applications

- Support more relation models/calculi
- Make the algorithm parameter free
 - Estimate the optimal value for the bfs
 - Pose preprocessing queries
- Use approximate blocking techniques

Thanks for your attention! Questions?