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ABSTRACT
Identifying the complementary relationship between prod-
ucts, like a cartridge to a printer, is a very useful technique
to provide recommendations. These are typically purchased
together or within a short time frame and thus online re-
tailers benefit from it. Existing approaches rely heavily on
transactions and therefore they suffer from: (1) the cold
start problem for new products; (2) the inability to pro-
duce good results for infrequently bought products; (3) the
inability to explain why two products are complementary.

We propose a framework that aims at alleviating these
problems by exploiting a knowledge graph (DBpedia) in
addition to products’ available information such as titles,
descriptions and categories rather than transactions. Our
problem is modeled as a classification task on a set of prod-
uct pairs. Our starting point is the semantic paths in the
knowledge graph linking between product attributes, from
which we model product features. Then, having a labeled
set of product pairs we learn a model; and finally, we use this
model to predict complementary products for an unseen set
of products. Our experiments on a real world dataset from
Amazon show high performance of our framework in pre-
dicting whether one product is complementary to another
one.
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1. INTRODUCTION
Online retailers like Amazon or eBay sell millions of prod-

ucts from several categories and continuously expand their
catalogs. Being aware that browsing a large catalog can
be overwhelming for a user and can therefore have a neg-
ative impact on revenue [3, 24], it is not a surprise that
many of these retailers are equipped with Recommender Sys-
tems (RS) [28]. While recommending products based on the
user’s taste is certainly an important task any RS has to
carry out, special attention has to be paid at the moment
in which a purchase is about to be made. In this circum-
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stance the RS can expose the user interested in a product
to other products whose use is related to their desired prod-
uct. Those products are referred to as complementary prod-
ucts [2]. For instance, a user who placed a guitar in the
shopping cart might also be interested in purchasing a gui-
tar tuner, a case, or a book about learning how to play it. It
is important to notice that complementary products might
belong to a different category than that of the associated
product, e.g. Instrument Accessories, Bags & Cases and
Books in the example above. This means that there are also
some relationships at the level of categories too. Some of
them are evident, like Instruments and Instrument Acces-
sories, while some of them are not immediately obvious like
Instruments and Books.

The majority of the approaches to find complementary
products make use of transactional data, e.g. by extract-
ing association rules or by applying other data mining tech-
niques [7, 22, 27, 31, 32]. This means that new catalog
products have no chance to appear as complementary to any
other product. In addition to this, these approaches might
also produce noisy recommendations for products which are
infrequently purchased and are not able to explain the rea-
son for the recommendation [18].

Therefore, a model is required from which this relationship
between a complementary product and its associated prod-
uct can be learned. We believe that a graph representation is
the most suitable for this. Products, their attributes and the
categories to which they belong, as well as the interconnec-
tions between them can be represented as nodes and paths
in the graph. Having such a model would not only allow
us to find links between a complementary product and its
associated product without any need for transactions, but
also to provide explanations of why this relationship exists.

However, learning to discriminate between different kinds
of relationships from those interconnections within a com-
plex semantic graph model is still an open problem. See
for instance the feature vector illustrated in Figure 1, which
represents a pair of products (pi, pj). Each of the features
should indeed reflect a property which characterizes both
products as a whole, or a certain interaction between those.
A class label, complementary or non-complementary is as-
sociated with each sample. While trying to fit a classifica-
tion model which learns how to discriminate the relation-
ship from a set of samples like those might seem the obvious
way of solving the problem, the problem remains: what are
those features that reflect some property of pairs of prod-



ucts? What do they reflect? Is this property related to the
fact that one product might be complementary to the other
one? This work aims at addressing these questions.

Figure 1: Feature vector

Contributions. The contributions of this paper can be
summarized as follows.

1. We propose CompLoD, a novel and extensible frame-
work that predicts the complementary relationship be-
tween two products by using only textual information
such as titles, descriptions and categories.

2. The approach does not require transactions as other
approaches and therefore, it is immune to the cold-
start problem for new items.

3. Our scheme bridges the gap of how to encode infor-
mation from a knowledge graph into a relevant feature
set to fit a classification model and predict the com-
plementary relationship.

4. Rather than building a knowledge graph from scratch,
we believe that Semantic Web standards have enough
to offer in this regard. Therefore, we use DBpedia1, a
well-known Linked Open Data (LoD) dataset, as the
core of the knowledge graph. This dataset is the struc-
tured counterpart of Wikipedia and it is modeled as an
RDF graph. We thereby demonstrate the usefulness of
Semantic Web data.

We evaluate the accuracy of our approach by conducting
experiments using Amazon data [14, 15] as our ground truth
and find that it produces competitive results in comparison
to those showed in [14] when taking into account that no
transaction data is used. Our paper is structured as fol-
lows: We aim at providing some notation and definitions
used within this paper in section 2. In section 3 the work-
flow of CompLoD is explained in detail. Section 4 shows
the experiments that have been carried out to validate our
system. In section 5 we present the related work. Finally,
we present our conclusions in section 6.

2. NOTATION
This section provides some fundamental definitions which

allow us to explain the system in detail. Our approach re-
quires modeling four elements within an RDF graph: prod-
ucts, attributes and the categories to which products be-
long in addition to the relationships between all of these
elements. Attributes are characteristics of a product which
are extracted from a product’s specification. Categories are
instead given and are classified in a taxonomy. For instance,
bronze strings is an attribute of a guitar. Moreover a gui-
tar might belong to categories such as Musical instruments,
Guitars and Acoustic Guitars. Categories are hierarchically

1http://wiki.DBpedia.org/

arranged: acoustic guitars are a certain kind of guitar and
these are a certain kind of musical instrument.

Since RDF is used as an underlying data model, we need
to introduce some notation. Let I, B and L be the set of all
IRIs (Internationalized Resource Identifiers), the set of all
blank nodes and the set of all literals, respectively. Then a
triple (rs, p, ro) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called
an RDF triple. An RDF graph G is a set of RDF triples.
Moreover, let V be a set of variables. A tuple of the set
(I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ), e.g. (?x, p, ro), is
called a triple pattern, in which variable names are prefixed
with the question mark (“?”) symbol. A triple pattern can
be evaluated according to the SPARQL semantics to find all
those mappings between variables and resources from the
graph which would make of that tuple a valid triple. For a
more comprehensive description of RDF and SPARQL we
refer the reader to [13, 25].

A path in graph G between a source resource rs and a
target resource ro is denoted by ρ(rs, ro)(p1,p2,...,pt), where
(p1, p2, ..., pt) is the sequence of predicates that connects rs
to ro

2. A path can be recursively defined as follow:

• ρ(rs, ro)(p) is a path of length 1 if there exists a triple
(rs, p, ro) ∈ G which connects rs to ro.

• ρ(rs, ro)(p1,p2,...,pt) is a path of length t if there exists
a resource rl such that ρ(rs, rl)(p1,p2,...,pt−1) is a path
of length t− 1 and ρ(rl, ro)(pt) is a path of length 1.

In our RDF graph each of the above-mentioned elements,
products, attributes and categories, corresponds to an RDF
resource. Let P ⊆ I = {rp1 , rp2 , ..., rpn} be a subset of all
IRIs representing a set of products, A ⊆ I = {ra1 , ra2 , ..., ram}
is a set of products’ attributes and C ⊆ I = {rc1 , rc2 , ..., rcl}
a set of products’ categories. From now on products, at-
tributes and categories will denote the RDF resource which
identify these elements. Moreover, we will use rp, ra and
rc to denote an arbitrary product, attribute and category,
respectively. We assume that each product is connected to
its attributes and to the categories to which it belongs in
G. Moreover, there exist arbitrary connections in G among
attributes or categories, i.e. there are no restrictions on how
resources are connected.

Problem statement. Given two products (rpi , rpj ) in G,
we would like to predict whether rpj is complementary to
rpi using G. Let comp(rpi , rpj ) be a function that returns 1
when this relationship holds, 0 otherwise. It is directional,
i.e. comp(rpi , rpj ) = 1 doesn’t imply that comp(rpj , rpi)

also returns 13.

3. OUR APPROACH
Figure 2 illustrates a high-level view of our framework

CompLoD. The system needs to process only textual infor-
mation of products, such as titles, descriptions and cate-
gories. Example 1 illustrates the input expected for a prod-
uct.

2For simplicity, we assume (p1, p2, ..., pt) identifies a unique
sequence of predicates which connect rs to ro.
3For instance, a guitar tuner is complementary to a guitar,
but the opposite does not necessarily hold true.



Figure 2: Workflow of CompLoD

Title: Logitech M510 Wireless Mouse, Large Mouse, Com-

puter Wireless Mouse.

Category: Electronics; Computers & Accessories; Computer

Accessories & Peripherals; Keyboards, Mice & Accessories;

Mice

Description:

Contoured shape with soft rubber grips for all-day comfort

* Back/forward buttons and side-to-side scrolling plus zoom

let you do more, faster Requires Logitech SetPoint software

* 2-year battery life eliminates the need to replace batteries.

Battery life may vary based on computing conditions

* Comes with a tiny Logitech Unifying receiver that stays in

your computer - plug it in, forget it

* 3-year limited hardware warranty

* Compatibility: Works with - Windows XP, Windows Vista,

Windows 7, Mac OS X 10.4 or later, USB Port

* Mouse Dimensions (height x width x depth): 2.56 in (65

mm) x 4.72 in (120 mm) x 1.61 in (41 mm)

Example 1: Title, categories and description of a
product (mouse)

As previously mentioned, attributes are extracted from the
description of a product. Moreover, a category is a struc-
tured piece of information organized as a taxonomy. The
categories go from generic (Electronics) to more specific
(Mice). However, CompLoD doesn’t make use of the taxon-
omy and sees all categories as independent.

Together all of this information is then processed in a
pipeline-like fashion. First the product’s meta-data is trans-
formed into a structured graph in which product attributes
and categories are matched against DBpedia resources (A).
The resulting knowledge graph is a subgraph of DBpedia,
extended with the products represented as synthetic nodes.
Being aware that not all attributes have the same role in
characterizing a product and that not all the interconnec-
tions are able to provide the same quality of information,
we decided to attach scores to the nodes and paths in the
graph using consolidated metrics (B). The results are used in
the next stage to build the feature set for pairs of products.
Finally, we train a classification model (C) and when this is
fitted, the framework is able to answer the question whether
one product is complementary to another one. More details
about the individual tasks are provided in the following sec-
tions.

3.1 Building a knowledge graph
Our framework requires a knowledge graph as the starting

point and we opted for DBpedia. In addition to the deter-
ministic rules which are used to build the graph, DBpedia

also has regularities with predictive power [20]. To make use
of this, we need to integrate the products’ meta-data into
it by extracting structured information from the text. We
therefore use AlchemyAPI, a NER tool. This identifies those
tokens which correspond to published LoD IRIs. Whereas
the tool supports the mapping to resources from several LoD
datasets4, we only store the information relative to DBpedia
and leave the possibility of exploiting multiple datasets to
future work. For instance, from the previous text some of
the identified resources are5:

Categories

Electronics: dbpedia:Electronics

Computer & Accessories: dbpedia:Computer, ...

Attributes

Logitech: dbpedia:Logitech, yago:Logitech, ...

Operating system: dbpedia:Operating system, ...

Microsoft Windows: dbpedia:Microsoft Windows

Mac OS X: dbpedia:Mac OS X, ...

Microsoft: dbpedia:Microsoft, yago:Microsoft, ...

IMac: dbpedia:IMac, yago:IMac, ...

Windows Vista: dbpedia:Windows Vista, ...

Example 2: Resources identified from the
meta-data of the product showed in example 1

It can be observed that some of the identified resources cor-
respond to categories, such as dbpedia:Electronics, while oth-
ers are attributes, such as dbpedia:Logitech (brand). To keep
the approach fully automated, we treat categories as text as
well. The quality of this task highly depends on the effi-
cacy of the NER tool, each of which has its own limitations.
While most of the important resources are identified, some
of them, like dbpedia:Computer mouse (category), which are
important to characterize the product, are not necessarily
recognized. For more details about the expected perfor-
mance of these tools we refer the reader to [8].

Given the products and the identified resources, the RDF
graph is built as follows:

1. First we build a basic RDF graph Gp. We create one
resource rp for each product and connect it to its at-
tributes IRIs. Let Arp be the bag6 of attributes iden-
tified in the input text of the product represented by

4Currently supported to the date of publication are DBpe-
dia, Freebase, US Census, GeoNames, UMBEL, OpenCyc,
YAGO, MusicBrainz, CIA Factbook and CrunchBase.
5We use prefixes to shorten the namespaces:
dbpedia: http://dbpedia.org/resource/
yago: http://yago-knowledge.org/resource/
6The tokens can appear multiple times in the text. We have



rp. We create a triple (rp, sp, ra) linking the product
rp with each ra ∈ Arp using a synthetic predicate sp.
If an attribute ra appears more than once in Arp , we
create as many triples as the number of times ra ap-
pears in Arp , where each triple has a different synthetic
predicate.

2. Let Crp be the set of categories to which the product
belongs. We also create triples (rp, sp, rc) that link
products with their categories.

3. We enrich Gp by extracting a subgraph from DBpedia.
This subgraph contains all DBpedia resources identi-
fied by the NER tool and all the resources reachable
within 2 hops from them. We ignore the direction of
the edges to do so. The reason why we limit the length
to 2 is to reduce the computational cost of computing
metrics on top of the graph (more details in the next
section). We merge Gp with the extracted subgraph
to form the Extended graph EGp. Note that attributes
and categories in EGp are interconnected.

EGp is then the input of the next task, in which metrics
are computed to measure the importance of an attribute or
a category for a product as well as the importance of the
semantic paths interlinking them.

3.2 Computation of metrics
In our knowledge graph every product is connected to its

attributes and categories. However, those attributes might
have a distinct relevance in describing a product or even in
describing a category (seen as a set of products). Therefore,
we require some metrics that reflect the following intuition:

• How well can an attribute characterize a product, e.g.
is equalizer more representative than rechargeable to
describe a speaker? Section 3.2.1.

• How well can an attribute characterize a category, e.g.
is 4K more representative than wireless for the cate-
gory Television & Video? Section 3.2.2.

• How relevant is the information carried by a path con-
necting two resources? Let’s assume, for instance, that
two product resources, a television (tv) and a speaker
(s), are connected through several paths of different
lengths in EGp.

Is the path tv
connectivity−−−−−−−−→ Bluetooth

connectivity←−−−−−−−− s that
goes through Bluetooth more important than another
one that goes through Stereo? Which of these paths
is the most informative? Does the length also play a
role? Suppose that the connection is now

tv
connectivity−−−−−−−−→ Bluetooth

type−−−→ Wireless
connectivity←−−−−−−−− s. Does

the informativeness decay with the length of the path?
Section 3.2.3.

In order to provide answers to those questions and fulfill the
requirements we employ Term frequency-inverse document
frequency (TF-IDF)[19], a weighting scheme widely used in
Information Retrieval and text mining to determine how im-
portant a term is to a document within a corpus. The design
of such metrics is achieved through different instantiations
of TF-IDF, i.e. we map different components of the RDF

to preserve the information of how often the attribute occurs
in order to compute metrics in the next stage.

graph to terms and documents. This requires the considera-
tion of a product rp as a bag of attributes {ra1 , ra2 , ..., rak}.
A category rc can be also thought of as a bag of attributes,
namely those used to describe products of that category.
We will explain these metrics in more detail in the following
sections.

3.2.1 (Product) Attribute Frequency - Inverse Prod-
uct Frequency (PAF-IPF)

The representation of a product as a bag of attributes
allows us to define a weighting scheme that reflects how well
an attribute ra is able to represent or describe a product rp.
We instantiate TF-IDF using a product as a document and
its attributes as the terms within the document.

PAF-IPF (ra,rp) = PAF(ra,rp) × IPF(ra)

IPF(ra) = log
|P |

PF(ra)

Intuitively, PAF(ra,rp) counts the number of times a product
rp is described by an attribute ra, i.e. it counts the number
of triples that link the product to an attribute. In a similar
way PF(ra) counts the number of products that have ra as
an attribute. |P | is the cardinality of the set P , i.e. the
number of products available in G. The goal of IPF(ra) is
to reduce the score by a factor which is proportional to the
number of times the attribute is used to describe products.
If an attribute is common to all products then it cannot
strongly characterize the product.

3.2.2 (Category) Attribute Frequency - Inverse Cat-
egory Frequency (CAF-ICF)

In the same way we define the following:

CAF-ICF (ra,rc) = CAF(ra,rc) × ICF(ra)

ICF(ra) = log
|C|

CF(ra)

which reflects to which extent an attribute characterizes a
category. CAF(ra,rc) counts the number of times that an
attribute resource ra is used to describe a product rp that
belongs to a category rc. CF(ra) counts the number of cat-
egories in which the attribute ra is used to describe at least
one product which belongs to that category. |C| is the car-
dinality of the set C. The role of ICF(ra) is the same as
that of IPF(ra).

3.2.3 Path Informativeness
In addition to the two metrics introduced above, we re-

quire another one which reflects the degree of informative-
ness a path carries with it. We use the definition of path
informativeness presented in [26], which we tailored for our
needs. This concept is based on a similar instantiation of
TF-IDF. RDF resources r are used as documents. However,
two kinds of documents are considered: those in which r
appears as a subject of a triple and those in which it has
the role of an object. This allows us to define the following
metric:
Predicate frequency - Inverse Triple Frequency PF-ITF :

I-PF-ITF (p,r) = I-PF (p,r) × ITF(p)

O-PF-ITF (p,r) = O-PF (p,r) × ITF(p)

ITF(p) = log
|T |
|T (p)|



I-PF-ITF (p,r) is the Input PF-ITF of a term p within the
document resource r and O-PF-ITF (p,r) is the Output PF-
ITF of a term p within the document resource r. I-PF (p,r)

counts the number of resources that can be mapped to the
variable ?x of the triple pattern (?x, p, r). This is also the
case for O-PF (p, r) in which the possible mappings for ?y
in (r, p, ?y) are counted. |T | is the overall number of triples
whereas |T (p)| is the number of triples in which p appears.
The role of ITF(p) is the same as for the previous instanti-
ations.

This metric allows us to define the informativeness metric.
For a path ρ(ri, rj)(p) of length 1 the informativeness I is
defined as:

Iρ(ri,rj)(p) =
O-PF-ITF (p,ri) + I-PF-ITF (p,rj)

2

For paths of length t the informativeness is defined as the
sum of the informativeness of its components divided by the
length of the path.

ρ(ri, rj)(p1,...,pt−1,pt)

Iρ(ri,rj)(p1,...,pt−1,pt)
= (Iρ(ri,rk)(p1) + ... +

Iρ(rq,rs)(pt−1)
+ Iρ(rs,rj)(pt))/t

Given the previous definitions, it is possible to define Imax,
i.e. the maximum informativeness carried by a path connect-
ing two resources ri and rj .

Imax(ri, rj) = max{I(ri, rj)ρ1 , ..., I(ri, rj)ρk},

where ρi is an arbitrary path. Each pair of paths ρi and ρj
is different, i.e. there exists at least one predicate in both
paths which differs. Similarly, it is possible to define Iavg,
the average informativeness of all paths between ri and rj .

Iavg(ri, rj) = (I(ri, rj)ρ1 + ...+ I(ri, rj)ρk )/k

To summarize. The metrics allow us to determine the
importance of attributes in describing a product or a cate-
gory, or to measure the amount of informativeness carried by
the semantic paths connecting two resources. These are de-
signed considering different granularities for the definition of
document. In the case of PAF-IPF a document is a product
and the terms are the attributes that describe the product.
In the second case, CAF-ICF, a document is a category and
the terms are the attributes used to describe products of
that category. In the case of informativeness documents are
subject or object resources whereas predicates are the terms.
CompLoD computes the relevance metrics in EGp by iterat-
ing over the set of identified attributes and then it proceeds
by searching paths linking between them.
All these metrics have been validated by other works and
have been used to solve a variety of problems. However,
when one focuses again on the problem illustrated in fig-
ure 1, i.e. the problem of designing a feature set that ap-
plies to pairs of products, one can notice that these metrics
cannot be used directly as features. For instance, PAF-IPF
and CAF-ICF are metrics which apply to a single product.
While nothing prevents one from using them as features for
pairs, it is not possible to have each possible attribute as a
feature. This would lead to an extremely high-dimensional
feature vector. And whereas the path informativeness be-
tween two products’ attributes could be thought of as a fea-
ture for pairs of products, one cannot have each possible

path as a feature either, for the same reason explained above
(high-dimensionality).

We propose therefore a strategy to combine these metrics,
by following a very natural intuition which turned out to
produce useful results. This allows one to design a low-
dimensional feature vector which can be used to model pairs
of products.

3.3 Features engineering
To the best of our knowledge there is no work which

addresses the issue of which features for pairs of products
(rpi , rpj ) can be used to predict the complementary relation-
ship. We aim at filling this gap. Our rationale is based on
the observation that for products belonging to different do-
mains there might exist correspondences and dependencies
between their attributes. This has been validated in market-
ing, behavioral, and data mining research studies [4]. Our
hypothesis is that (1) the correspondences and dependencies
tell us also something about the complementary relation-
ship, and (2) this correspondence can be measured by the
informativeness carried in the interconnection between at-
tributes, weighted by those attributes’ relative importance.
We therefore explain in this section how to leverage the in-
terconnections of the knowledge graph and to combine the
metric scores in a meaningful way.

Let Arpi and Arpj be the bag of attributes of products

rpi and rpj . To simplify the explanation of the formulas to
calculate the features we will from now on assume that rai
and raj are attributes of rpi and rpj , respectively. More-
over, we also assume that rci and rcj are the most specific
categories of rpi and rpj . For the sake of readability we in-
troduce two weighting functions ωP and ωC shown in figure
3, which use PAF-IPF and CAF-ICF, respectively. In this
way, we can weigh a path between two attributes of rai and
raj according to their characterization relevance. Next, we
will present the design choices we made.

Maximal Informativeness over the most relevant prod-
uct attributes (MIMPA): this feature combines PAF-IPF
and the concept of informativeness as follows. Given a prod-
uct rpi , we first search for the attribute rai that has the
maximum PAF-IPF(rai

,rpi )
among other attributes. We do

the same for rpj . Let r
Mp
ai and r

Mp
aj be these attributes for rpi

and rpj , respectively. These are the most relevant product
attributes. The feature is then designed as follows:

MIMPA(rpi ,rpj )
= Imax

(
r
Mp
ai , r

Mp
aj

)
· ωP (r

Mp
ai , r

Mp
aj )

Recall that when computing Imax(r
Mp
ai , r

Mp
aj ) all possible

paths which connect r
Mp
ai to r

Mp
aj are considered and from

these, it returns the max. informativeness value.

Maximal Informativeness over the most relevant cat-
egory attributes (MIMCA): we focus again on the at-
tribute bags of both products. However, rather than search-
ing for those which characterize the products the best, we
take a look to the most specific category of each product and
leverage CAF-ICF to find the attribute which characterizes
this category the best. Let rMc

ai and rMc
aj be these attributes

for rpi and rpj , respectively. Then:

MIMCA(rpi , rpj ) = Imax
(
rMc
ai , r

Mc
aj

)
· ωC(rMc

ai , r
Mc
aj )



ωP (rai , raj ) =

√(
PAF-IPF(rai

,rpi
)

)2
+

(
PAF-IPF(raj

,rpj
)

)2

2
, ωC(rai , raj ) =

√(
CAF-ICF(rai

,rci
)

)2
+

(
CAF-ICF(raj

,rcj
)

)2

2

Figure 3: Weighting functions ωP and ωC

where rci and rcj are the categories of products rpi and rpj ,
respectively.

Average Informativeness over the most relevant prod-
uct attributes (AIMPA): this feature works in a similar
way as MIMPA. When the most relevant attributes of the

products, r
Mp
ai and r

Mp
aj , are identified, all paths connecting

these resources are considered. Therefore, the average infor-
mativeness Iavg is considered and not only the score of the
most informative one.

AIMPA(rpi , rpj ) = Iavg
(
r
Mp
ai , r

Mp
aj

)
· ωP (r

Mp
ai , r

Mp
aj )

Average Informativeness over the most relevant cat-
egory attributes (AIMCA): in the same way as MIMCA,
we consider here the attributes which characterize the cat-
egory the most, but we use Iavg instead of Imax, i.e. we
consider the average informativeness of all paths connecting
them.

AIMCA(rpi , rpj ) = Iavg
(
rMc
ai , r

Mc
aj

)
· ωC(rMc

ai , r
Mc
aj )

Average of maximal informativeness over all attributes
(AMIO): rather than considering the most relevant at-
tribute for each product, we focus here on the informative-
ness flowing from one product (from all of its attributes) to
the other one. To do so we consider all pairs of attributes rai
and raj , which belong to rpi and rpj , respectively, and com-
pute the maximum informativeness carried by the links of
each product pair. As for previous features we also combine
the relevance of individual attributes with the informative-
ness of the link.
Let P(rpi ,rpj )

= {(rai1 , raj1), (rai1 , raj2), ..., (raik , rajl)} be

a set of attributes tuples, where the first element is an at-
tribute of rpi and the second of rpj . Then:

AMIOP (rpi , rpj ) =
1

| P(rpi ,rpj )
| · ∑

(rai
,raj

)∈P(rpi
,rpj

)

Imax(rai , raj ) · ωP (rai , raj )


AMIOC(rpi , rpj ) =

1

| P(rpi ,rpj )
| · ∑

(rai
,raj

)∈P(rpi
,rpj

)

Imax(rai , raj ) · ωC(rai , raj


AMIO(rpi , rpj ) =

AMIOP (rpi , rpj ) +AMIOC(rpi , rpj )

2

AMIO combines both, the characterization power of the at-
tributes in the role of product attributes and category at-
tributes.

Average of average informativeness over all attributes
(AAIO): this feature is computed in the same way as AMIO,
except that Iavg is used instead of Imax. In this way we con-
sider the complete flow of informativeness between each pair
of attributes.

Maximal relevance of common product attributes
(MRCPA): when considering only the common attributes
of both products Arpi

⋂
Arpj , we compute the PAF-IPF of

the elements of the intersection and return the maximum
value.

MRCPA(rpi , rpj ) = max { ωP (rai , raj ) :

rai = raj ∈ (Arpi ∩Arpj )}

Maximal relevance of common category attributes
(MRCCA): this is the symmetrical counterpart of MR-
CPA in which one considers the contribution of common
attributes in characterizing the product categories.

MRCCA(rpi , rpj ) = max { ωC(rai , raj ) :

rai = raj ∈ (Arpi ∩Arpj )}

Main product relevance (MPR): this metric measures
the relevance of the main product (first element of the pair
at the input sample) on the basis of its attributes. Let
|(ra, ?p, ?o)| be the number of triples having ra as subject
and |(?s, ?p, ra)| be the number of triples having ra as object.
Then:

MPR(rpi) =
∑

ra∈Arpi

(|(ra, ?p, ?o)|+ |(?s, ?p, ra)|)

Related product relevance (RPR): this metric is the
same as the previous one, but applied to the related product
(second element of the pair at the input sample).
Interconnection between products (IP): this feature
aims at reflecting the degree of connectivity between the at-
tributes of two products. Let ϕ be the number of attributes
pairs (rai , raj ) ∈ P(rpi ,rpj )

in which there exist at least one

path connecting them. Then:

IP (rpi , rpj ) =
ϕ

|P(rpi ,rpj )
|

Product similarity (PS): to measure the degree of simi-
larity, we use the Jaccard similarity to the set of attributes
of both products:

PS(rpi , rpj ) =
|Arpi

⋂
Arpj |

|Arpi
⋃
Arpj |

Other metrics: We designed and tried several other fea-
tures whose contribution was small or minimal.

In this section we introduced the features which played an
important role in predicting whether one product is comple-
mentary to another one. All the 12 features are the result



of a feature selection task performed to boost the accuracy
prediction of the classifiers. These are shown on top of the
next page together with their relative importance7.

3.4 Classification model
With enough input samples and a well-defined feature set

the last missing step consists of fitting a classifier. A wide
range of classification techniques exist for supervised learn-
ing. We compared the performance of different kinds of clas-
sifiers, ensemble and non, and random forest was the fittest
model. Moreover, we validated our model and carried out
hyper-parameter optimization. More details can be found
in the next section.

4. EXPERIMENTS
We conducted experiments to assess the performance of

CompLoD. Some of these experiments helped us to choose
the most suitable classifier and to optimize it. But the cen-
tral question, whether the designed feature set was really
significant, could be also answered. Each of the single tasks
of CompLoD were run on a single machine with a processor
Intel(R) Xeon(R) CPU E3-1231@3.80GHz with 4 cores and
32 GB of RAM.
Dataset. We used a dataset from Amazon.com8. This con-
tains products’ meta-data for each category. Our experi-
ments focus on the category Electronics, which includes a
wide range of subcategories, such as Internal Hard Drives,
eBook Readers or Camera Batteries, etc. The overall num-
ber of subcategories considered is 817 whereas the number of
products is ca. 0.5 million. In addition to the meta-data for
each product the dataset also contains four lists of related
products: also bought, also viewed, bought together, buy after
viewing. As in [14] we assume that also bought and bought
together products are complementary. Products from the
remaining lists are substitutable products9. We use them
as the negative class (non-complementary). We manually
verified that this assumption is not always correct: for some
products some related products appeared in both groups.
Assuming that a product cannot be both, substitutable and
complementary to another one, we removed those ambiguous
related products. As a result of this process, 11% of comple-
mentary products and 8% of non-complementary products
were removed from the dataset.
Building the graph. One of the initial stages of the frame-
work consists of identifying from the text those tokens which
correspond to resources published in the LoD cloud. Ap-
prox. 3500 resources were recognized by the NER tool,
which is a relatively low number. However, for 96% of the
products at least one resource could be identified. The un-
matched 4% was removed from the dataset. By querying
DBpedia’s SPARQL remote endpoint we extract the triples
in which those resources appear as subject or object of a
triple. We repeat this process iteratively until we obtain
all resources reachable within 2 hops from the identified re-
sources. The resulting graph has approx. 1.4 million re-
sources.

7The importance is computed as the normalized total re-
duction of the criterion represented by that feature (Gini
importance of random forests).
8The dataset is part of the project “Stanford Network Anal-
ysis Project (SNAP)” and made available for research.
9We are not addressing in this work the task of predicting
the substitutable relationship.

Computing metrics. Once the knowledge graph is built
we compute the metrics explained in section 3.2. The PAF-
ICF and CAF-ICF relevance scores and the informativeness
of the paths are efficiently stored in the system using in-
verted indexes for easy retrieval.
Classification. With the metrics computed, we compute
the features as explained in section 3.3 for those pairs of
products which appear in the ground truth. We store the
feature vectors and attach the class label to it, complemen-
tary and non-complementary. The overall number of in-
put samples is ca. 3.7 million, of which 1.4 million rep-
resents complementary pairs and 2.3 million pairs the non-
complementary counterpart. These input samples were then
split into training and test sets. We kept the distribution
at 50% of positive and 50% negative samples. We started
with a relatively small number of samples for the training
set (10%) and we gradually increased it until we reached
90%. In this way we were able to analyze the learning rate
of the classifiers. We tried the performance of several of
them, such as Decision Trees, Random Forest, AdaBoost,
Naive Bayes (Gaussian), Linear Discriminant Analysis and
Quadratic Discriminant Analysis. We used the following
rates computed from the confusion matrix (TP=true posi-
tive, FP=false positive, TN =true negative, FN =false neg-
ative):

Precision(+) =
TP

TP + FP
; Precision(-) =

TN

TN + FN

Recall(+) =
TP

TP + FN
; Recall(-) =

TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F1-Measure(+) = 2 · Precision(+) · Recall(+)

Precision(+) · Recall(+)

The label (+) in the metric focuses on the quality attribute
for predicting the positive class whereas (-) focuses on the
negative one. Accuracy is then defined as the mean of the
positive and negative precision score. The performance of
the different classifiers was similar. To avoid overfitting
and make sure that the model generalizes to an indepen-
dent dataset, we validate our model with K-Fold and Monte
Carlo cross-validation (CV). While k-Fold CV makes sure
that each of the folds is used at least once as a test set,
Monte Carlo CV randomly shuffles the whole dataset, thus
generating independent partitions for each run. The final
results are shown in Figure 4(A), which illustrates that the
Random Forest classifier improves its accuracy with more
input samples from which it can learn, being able to obtain
up to ca. 78.5% accuracy. In the same figure (B) shows that
the recall for the negative class overtakes that of the posi-
tive class. It is important to mention that a TN refers to a
non-complementary ground truth pair which is predicted to
be non-complementary. As the very last task we performed
hyper-parameter optimization by exploiting two techniques,
namely Random Search (run with 30 iterations) and Grid
Search (run with the top-3 parameter set).
Results and reflections. One of the unique advantages
of our framework is that new products have a chance to be
classified as complementary to other products even in the
absence of previous purchase history of the prod-
uct. The results are certainly not as good as for the case
for which transaction data or post-transaction feedback is
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Figure 4: Performance results of CompLoD in terms of (A) accuracy, (B) recall, and (C) F1-measure

available, but this work should open a new door for fur-
ther contributions. For instance, the work of McAuley et
al. in [14], which uses post-transaction feedback to learn a
model, obtained an accuracy of 88% on the same dataset
and category using reviews and additional meta-data which
we didn’t consider in our work, e.g. prices10. The perfor-
mance of CompLoD is then surprisingly good at taking into
account that only minimal information about the product is
used, therefore making it well-suited to deal with the cold-
start problem.

CompLoD also enables a different perspective. Whenever
the relationship between two products is identified as com-
plementary and an explanation is required, it is possible to
go back to the graph components and the values of the com-
puted graph metrics from the values of the single features
and to provide the user with a reasonable explanation. For
instance, one could use the most relevant attributes or cat-
egory attributes of both products, e.g. those that maximize
PAF-IPF or CAF-ICF, respectively, and the path connecting
those attributes which maximizes the informativeness. Fig-
ure 5 illustrates this. All these components are a valuable
source of explanation. However, assessing which of these
graph components are the most useful would require an on-
line study with real users.
Computational cost and scalability. PAF-IPF and CAF-
ICF have a cost ofO(|P |+|A|) andO(|C|+|A|), respectively.
The cost of path informativeness is higher: O(|I|+ |Pred|),
where Pred is the set of all vocabulary predicates. While
it is obvious that extracting information from a large graph
and computing metrics over it is certainly expensive, most
of the tasks done in the single stages of the framework can
be pre-computed off-line. For instance, one could try to keep
as many attributes in the graph as possible or even try to
anticipate attributes of soon-to-be-released products. The

10The results are not comparable only in terms of the learn-
ing source but also on the fact that they only considered in
their experiments products with 20 reviews or more, which
means that only 20% of the pairs of products contained in
the original ground truth remain after filtering those prod-
ucts out.

Figure 5: Two products and their most relevant at-
tributes

metrics can be then computed and stored at once. In this
way when a new product arrives in the system, all of its at-
tributes will already be present in the graph, together with
the informativeness scores of the semantic paths connecting
them to other attributes.

5. RELATED WORK
Approaches to find complementary products have a wide

range of applications, from product placement to products
bundling to website structure optimization, etc. In partic-
ular, on-line retailers make use of complementary products
to provide recommendations [30, 35], which help the users
to discover related products while improving their volume of
sales. Most of these techniques typically consist of mining
transactional purchase data, event logs, or users’ implicit
feedback. However, for new products for which such infor-
mation is not available or scarce, most of these approaches
are not applicable or fail altogether.

As in [14], we aim at learning the semantics of this rela-
tionship, thus making it possible to disregard transactions.
Therefore, we build a knowledge graph in which products,



attributes, and categories are represented as nodes inter-
connected by semantic paths. Knowledge acquisition is in
general a very costly task. Therefore, we extract this infor-
mation from DBpedia, whose usage as a knowledge base has
been validated in other fields, such as that of Cross-domain
Recommender Systems [6, 9, 23, 29].

Being able to learn from the semantics encoded in the
graph and the patterns therein has some commonalities with
Link Discovery or Link prediction. These approaches see
a knowledge graph as a statistical model. The existence
of triples is represented in these models as binary random
variables which are correlated with each other. Different as-
sumptions for the correlation lead to different models, e.g.
based on latent features [21], graph features or those in
which variables have local interactions [20]. Our work is
closer to observable graph feature models, in the sense that
some of the problems addressed there, e.g. designing a fea-
ture set from a graph to fit a learning model, are similar. For
instance, [1] focuses on predicting future friendship links in
Social Networks using topological features. Aiming at the
same goal, [5] presents and uses a combination of a large
number of features. These techniques are not necessarily
limited to Social Networks, but they are used in fields like
Biomedicine [10] or Genomics [34].

However, there is a central difference between these ap-
proaches and ours. First, we deal here with a knowledge
graph in which the structured information is integrated into
a complex ontology. This means two nodes can be inter-
connected in several ways which are not necessarily known
in advance. This differs from the kinds of graphs typically
treated in the link prediction problem, e.g. social, concept,
or interaction networks, whose edges intend rather to repre-
sent a small number of relationships and are therefore less
flexible in the representation. Secondly, many of the fea-
tures proposed are based on local similarity indices, such as
Common Neighbors, Adamic-Adar Index, Preferential At-
tachment Index, Jaccard Index, etc. and might therefore be
too localized to capture the patterns which determine the
complementary relationship.

A related problem can also be found in the field of online
search behavior [16]. In this area some efforts have been
done to predict whether two queries posed by a user within
a single or multiple sessions aim at performing the same
task. To do so, some approaches try to model hierarchies
of tasks and subtasks. For example, booking a hotel and
registering for a conference venue are subtasks of planning a
conference attendance. These methods are typically based
on classification, as in our case, or clustering [11, 12, 17,
33]. Since a purchase of one product and a complementary
one can be thought of as the problem of matching tasks, we
consider this line of research related work.

6. CONCLUSION AND FUTURE WORK
We presented CompLoD, a framework that leverages dif-

ferent models and techniques to identify complementary prod-
ucts while only using a product’s available meta-data, such
as titles, descriptions and categories. By extracting struc-
tured information from the text, we manage to build a knowl-
edge graph where products’ attributes are interconnected by
semantic paths. Being able to identify complementary prod-
ucts from this graph rather than using transactions, as most
of the current techniques do, solves the cold-start problem
for new items. Moreover, the fact that this graph is based on

DBpedia demonstrates the usefulness and value of Semantic
Web standards. The prediction task in the last stage is im-
plemented with a Random Forest Classifier which predicts,
for a pair of products, whether one product is complemen-
tary to the other. However, such a model requires a feature
set which represents properties of pairs of products. To the
best of our knowledge, this is the first time where the prob-
lem of extracting this information from a semantic graph to
predict the complementary relationship is addressed. Our
experiments show that the classifier is able to learn the re-
lationship from our designed feature set, thus validating it.

Although the predictive power of our system is surpris-
ingly good, given that this is achieved only by using prod-
ucts’ meta-data, it is important to mention that the quality
of CompLoD depends on the quality of the models and tools
used in the single stages. This dependency consequently
leaves room for improvement. Therefore, we would like to
try different NER tools and LoD datasets and investigate the
qualitative impact. We could also exploit a more domain-
specific LoD dataset. For this reason, the framework is ex-
tensible, i.e. all components can be extended or replaced.

In the future we would like to conduct further experiments
considering other categories, to strengthen the significance
of our approach. Predicting whether a product is comple-
mentary to another one might still produce too many recom-
mendation candidates for a single user. Therefore, we would
like to extend our model to be able to further refine the list
of complementary products taking into account the user’s
taste. For this task, a ranking strategy might be more suit-
able than a classification one. We would also like to include
features that reflect the hierarchical structure of categories
and in general to continue searching for new features that
improve the accuracy of the system.
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